Горностаевый кролик при повышенной температуре

   
   

Биология

Учебник для 10-11 классов

Качественные и количественные признаки. Все признаки организма можно разделить на две группы — качественные и количественные. Окраска цветков, форма плодов, масть животных, цвет глаз, половые различия — все это качественные признаки. При изучении качественных признаков не возникает затруднений в их классификации. Фенотипические классы потомков, появившиеся при расщеплении, легко различимы: черная или бурая корова, красная или черная лиса, белые или фиолетовые цветки у душистого горшка и т. д.

Однако изменчивость (разнообразие) носит не только качественный, но и количественный характер. Яйценоскость кур, молочность коров, масса семян пшеницы — это примеры так называемых количественных признаков. Большинство признаков, важных при разведении животных и выращивании растений, носит количественный характер. Количественные признаки можно изучать с помощью измерения и подсчета.

Живые организмы постоянно испытывают действие разнообразных факторов среды, в которой они обитают. Среда влияет на формирование и количественных, и качественных признаков.

Влияние условий среды на качественные признаки. Многие качественные признаки в меньшей степени, чем количественные признаки, подвержены влиянию условий среды. Например, в семье, где отец и мать имеют голубой цвет глаз, рождаются только голубоглазые дети. При этом не имеет значения, в каких условиях живет данная семья. Однако можно привести немало примеров, демонстрирующих влияние среды. У примулы окраска цветков определяется аллельной парой Rr. Гомозиготные растения RR обычно имеют красные цветки, но если в момент формирования бутонов растение перенести из обычных комнатных условий в теплую влажную оранжерею с температурой 30—35°С, то появятся белые цветки. Возвращение в комнатные условия не изменяет их белой окраски, но вновь распустившиеся цветки будут красными. Понятно, что в этом случае изменится признак, а не ген.

Другим примером, показывающим влияние условий внешней среды на развитие качественных признаков, может служить изменение окраски шерсти у горностаевого кролика. Горностаевые кролики (снсн) и кролики-альбиносы (сс) при рождении не окрашены. Альбиносы остаются совершенно белыми в течение всей жизни, а у горностаевых кроликов лапки, хвост, уши и мордочка со временем окрашиваются в черный цвет.

Если у горностаевого кролика (рис. 42) сбрить шерсть на каком-либо участке тела, то окраска вновь выросшей шерсти будет зависеть от температуры среды. Так, если сбрить белую шерсть на боку или на спине и содержать животное при температуре выше 2°С, то на этом месте снова вырастет белая шерсть. При температуре воздуха ниже 2°С вместо белой шерсти вырастет черная. Но если сбрить шерсть на ухе, то в обычных условиях там снова вырастет черная шерсть; под согревающим компрессом (при температуре 30°С) на выбритом участке вырастет белая шерсть.

Горностаевый кролик при повышенной температуре

Рис. 42. Распределение температурных порогов пигментообразования в волосах горностаевого кролика

Эти опыты объясняют, почему горностаевые кролики рождаются совершенно белыми: в эмбриональный период они находятся в условиях высокой температуры.

Влияние условий среды на количественные признаки. Развитие количественных признаков очень сильно зависит от влияния условий среды. Масса тела у крупного рогатого скота, как и у других животных, — типичный количественный признак. Установлено, что генотип оказывает важное влияние на формирование признака. Именно благодаря различиям в генотипе породы крупного рогатого скота резко отличаются по среднему значению, например, массы одного животного. Однако условия среды, например количество и качество корма, играют не менее важную роль в формировании этого признака (рис. 43).

Два бычка годовалого возраста

Рис. 43. Два бычка годовалого возраста,произошедшие от одного отца, но выращенные в резко различных условиях

Известно, что количество и качество молока в большой степени зависят от правильности кормления коровы. Но значит ли это, что удой зависит только от кормления? Нет, такой вывод неверен. Известно, что некоторые породы скота дают в обычных условиях в год 800—1200 кг молока. Улучшение кормления и содержания этих животных может резко повысить их продуктивность до 2500 кг молока. Ухудшение условий может привести к тому, что ценная порода скота, дающая 4500—5000 кг в год, снизит продуктивность до 2500 кг и даже ниже. Однако поднять продуктивность скота до 4000—5000 кг, улучшая только условия содержания, невозможно.

Норма реакции. Итак, признаки развиваются в результате взаимодействия генотипа и среды. Один и тот же генотип может в разных условиях среды давать разное значение признака. Пределы, в которых возможно изменение признаков у данного генотипа, называют нормой реакции. Иначе говоря, организм наследует не признак, как таковой, а способность формировать определенный фенотип в конкретных условиях среды, т. е. норму реакции (рис. 44).

Изменение размера одуванчика под влиянием условий среды

Рис. 44. Изменение размера одуванчика под влиянием условий среды
1 – выросший на равнине; 2 – выросший в горах

На примере с молочным скотом можно отметить, что норма реакции молочности местных пород скота колеблется от 1000 до 2500 кг, а у ценных пород она значительно выше — от 4000 до 6000 кг молока в год и даже более. В таких случаях говорят, что признак молочности у коров обладает широкой нормой реакции.

Таким образом, фенотип каждой особи есть результат взаимодействия ее генотипа с условиями окружающей среды.

  1. Почему разнообразие качественных признаков в малой степени зависит от влияния условий среды?
  2. Чем определяется широта нормы реакции?
  3. Можно ли, улучшив условия кормления, превратить овец грубошерстных в тонкорунных?
  4. Какое практическое значение в сельском хозяйстве имеет знание нормы реакции животных и растений?

Источник

Горностаевый кролик при повышенной температуре

  

Задания с развернутым ответом

Линия вопросов 24

Задание на анализ биологической информации

Общая биология (продолжение)

zadachi27 2 banner bio belok 

1. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.

1) Фотосинтез и клеточное дыхание играют важнейшую роль в жизнедеятельности растений. 2) Фотосинтез необходим для синтеза органических веществ из неорганических. 3) Первая стадия фотосинтеза – световая, при ней энергия света запасается в виде АТФ. 4) При этом выделяется кислород в качестве побочного продукта. 5) Темновая стадия, при которой АТФ расходуется на синтез глюкозы, у всех растений происходит ночью, в темноте. 6) Клеточное дыхание в свою очередь происходит только днём, поскольку для него необходим кислород, выделяющийся при фотосинтезе. 7) Ночью же для жизнедеятельности растения используется запасённая в виде АТФ энергия солнечного света.

5 – темновая стадия не требует света, но происходит тоже днём;

6 – в дыхании может использоваться любой кислород (дыхание может происходить и днём, и ночью);

7 – главным источником энергии ночью является клеточное дыхание (окисление органических веществ)

2. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.

1) Генеалогический метод генетики человека позволяет определить причину проявления геномных мутаций. 2) Благодаря генеалогическому методу установлены наследования гемофилии, дальтонизма, серповидно-клеточной анемии, альбинизма. 3) Близнецовый метод позволяет прогнозировать рождение однояйцевых близнецов. 4) Цитогенетический метод основан на изучении числа и строения хромосом. 5) С помощью цитогенетического метода выявляют причины наследственных болезней, исследуют хромосомные и геномные мутации. 6) Популяционно-статистический метод основан на анализе кариотипа. 7) Биохимический метод основан на изучении биохимических реакций и обмена веществ.

Читайте также:  Может быть повышена температура тела в начале беременности

1 – генеалогический метод позволяет определить характер наследования признаков у человека (эффективен при исследовании генных мутаций)

2 – близнецовый метод позволяет изучить взаимодействие генотипа и факторов среды и их влияние на формирование фенотипа

6 – популяционно-статистический метод дает возможность рассчитывать в популяциях человека частоту встречаемости нормальных и патологических генов (позволяет предсказывать вероятность генетических аномалий)

3. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.

1) Молекулы белка состоят из мономеров – моносахаридов. 2) Белки образуются в рибосоме на молекуле ДНК. 3) Процесс синтеза белка называется трансляция. 4) Белок может иметь первичную вторичную, третичную и четвертичную структуру. 5) Связь между мономерами белков в первичной структуре осуществляется за счет водородных связей.

1 – молекулы белка состоят из мономеров – аминокислот

2 – белки образуются в рибосоме на молекуле иРНК

5 – Связь между мономерами белков в первичной структуре осуществляется за счет пептидных связей.

4. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.

1) Энергетический обмен проходит в два этапа. 2) Первый этап – подготовительный – происходит в пищеварительной системе. 3) На втором этапе при бескислородном расщеплении из одной молекулы глюкозы образуется 1 молекула АТФ. 4) Бескислородное ферментативное расщепление глюкозы называют гликолизом. 5) Суммарно в процессе клеточного дыхания в результате расщепления одной молекулы глюкозы образуется 42 молекулы АТФ.

1 – энергетический обмен проходит в три этапа.

3 – На втором этапе при бескислородном расщеплении из одной молекулы глюкозы образуется 2 молекулы АТФ

5 – Суммарно в процессе клеточного дыхания в результате расщепления одной молекулы глюкозы образуется 38 молекул АТФ

5. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.

1) Белый цвет шерсти у горностаевых кроликов – это пример модификационной изменчивости, так же как у кроликов-альбиносов. 2) Однако, когда горностаевых кроликов отсадили в более холодное помещение, у них изменилась белая окраска кончиков ушей, хвостика и мордочки на черную. 3) Этого не происходило с кроликами-альбиносами. 4) Когда у горностаевого кролика выщипывали на неболшом участке кожи шерсть и охлаждали это место при температуре ниже 2С, то там вырастала черная шерсть. 5) Этот признак присутствовал и у потомства горностаевых кроликов. 6) Следовательно, возникновение черной шерсти у всей популяции горностаевых кроликов после охлаждения – это проявление наследственной изменчивости.

1 – Белый цвет шерсти у горностаевых кроликов – это пример наследственной изменчивости

5 – темная шерсть не наследовалась потомством, так как изменения возникали у всех кроликов только при понижении температуры

6 – возникновение черной шерсти у всей популяции горностаевых кроликов после охлаждения – это проявление модификационной изменчивости

6. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.

1) Быстрое протекание химических реакций в организме обеспечивают ферменты. 2) Один фермент катализирует несколько разных реакций. 3) Ферменты могут выполнять и гормональную функцию в организме, например, такую функцию выполняет инсулин. 4) Это обусловлено тем, что молекула фермента может пространственно изменяться, в зависимости от вещества, с которым он взаимодействует. 5) Сам фермент не изменяется по своему химическому составу в результате реакции. 6) Каждая молекула фермента может осуществлять несколько тысяч операций в минуту. 7) Ферментативный катализ снижает энергию активации химических реакций.

2 – один фермент катализирует только один вид реакций

3 – инсулин- гормон, он не является ферментом и не выполняет каталитических функций

4 – ферменты специфичны и взаимодействуют с субстратом по принципу ключ-замок, т.е. не меняют своей пространственной конфигурации

7. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.

1) Белки представляют собой высокомолекулярные регулярные полимеры, мономерами которых являются аминокислоты. 2) Совокупность связанных между собой аминокислотных остатков образует первичную структуру белка. 3) Эта структура удерживается пептидными и водородными связями. 4) Белки выполняют в организмах множество функций: транспортную, энергетическую, каталитическую, гормональную, защитную, структурную, сигнальную, двигательную. 5) Белки функционируют в клетке в виде третичной или четвертичной структуры. 6) Каждый белок в клетках кодируется определенным геном. 7) Поэтому все дети пары родительских особей имеют набор одинаковых белков.

1 – белки представляют собой высокомолекулярные нерегулярные полимеры, мономерами которых являются аминокислоты

3 – первичная структура удерживается только пептидными связями

7 – дети пары родительских особей имеют разный набор белков, так как их клетки содержат разные комбинации генов

8. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.

1) Молекула ДНК состоит из мономеров – нуклеотидов. 2) Каждый нуклеотид ДНК состоит из азотистого основания, углевода рибозы и остатка фосфорной кислоты. 3) Нуклеотиды двух цепей ДНК связаны нековалентными водородными связями по правилу комплементарности. 4) Четыре нуклеотида в цепи молекулы ДНК кодируют одну аминокислоту в молекуле белка, информация о строении которого заложена в гене. 5) ДНК контролирует синтез иРНК на одной из своих цепей. 6) Процесс синтеза иРНК на матрице ДНК называется трансляцией. 7) иРНК синтезируется на одной из цепей ДНК в соответствии с правилом комплементарности.

2 – каждый нуклеотид ДНК состоит из азотистого основания, углевода дезоксирибозы и остатка фосфорной кислоты

4 – три нуклеотида в цепи молекулы ДНК кодируют одну аминокислоту в молекуле белка

6 – процесс синтеза иРНК на матрице ДНК называется транскрипцией

9. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.

1) Клетки зеленых растений, используя энергию солнечного света, способы синтезировать органические вещества. 2) Исходными веществами для фотосинтеза служат углекислый газ и азот атмосферы. 3) Процесс фотосинтеза начинается с фотолиза воды под действием энергии солнечного света. 4) Фотолиз и синтез АТФ происходят в световой фазе. 5) В темновой фазе фотосинтеза образуются глюкоза и кислород. 6) Энергия АТФ, запасенная в световой стадии, расходуется на синтез углеводов. 7) Результатом фотосинтеза является образование органических веществ из неорганических и выделение кислорода как побочного продукта.

2 – исходными веществами для фотосинтеза служат углекислый газ и вода

3 – процесс фотосинтеза начинается с фозбуждения молекул хлорофилла

5 – в темновой фазе фотосинтеза образуются глюкоза, а кислород образуется в световой фазе

10. Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.

1) Мейоз – это особая форма деления клеточного ядра. 2) Перед началом мейоза каждая хромосома и каждая молекула ДНК удваивается. 3) Таким образом, в каждом ядре, в котором начинается мейоз, содержится диплоидный набор хромосом и удвоенный набор молекул ДНК. 4) В метафазе первого деления мейоза хромосомы расходятся к полюсам клетки. 5) У полюсов образуются гаплоидные наборы двухроматидных хромосом. 6) Каждая из этих удвоенных хромосом в телофазе второго деления мейоза попадает в гамету. 7) Распределение гомологичных хромосом по гаметам происходит независимо друг от друга.

Список литературы:

1. ЕГЭ 2020. Биология : тренировочные варианты : 20 вариантов / Г.И. Лерней. – Москва : Эксмо, 2019

2. Биология ЕГЭ-2020. Тематический тренинг. Все типы заданий : учебное пособие / а.А. Кириленко. – Ростов н/Д: Легион, 2019

3. Биология. Подготовка к ЕГЭ в 2020 году. Диагностические работы. – м.: МЦНМ, 2020

4. ЕГЭ 2020. Биология. Эксперт в ЕГЭ / А.А. Каменский, Н.А. Богданов, Н.А. Соколова, А.С. Маклакова, Н.Ю. Сарычева. – М. – Издателство «Экзамен», 2020

Просмотров: 6815

Источник

План.

1. Качественные и количественные признаки организма

2. Влияние условий среды на качественные признаки

3. Влияние условий среды количественные признаки.

4. Норма реакции

1. Качественные и количественные признаки.Все признаки ор­ганизма можно разделить на две группы — качественные и ко­личественные. Окраска цветков, форма плодов, масть живот­ных, цвет глаз, половые различия — все это качественные при­знаки. При изучении качественных признаков не возникает за­труднений в их классификации. Фенотипические классы потом- ков, появившиеся при расщеплении, легко различимы: черная или бурая корова, красная или черная лиса, белые или фиоле­товые цветки у душистого горошка и т. д.

Однако изменчивость (разнообразие) носит не только качест­венный, но и количественный характер. Яйценосность кур, мо­лочность коров, масса семян пшеницы — это примеры так на­зываемых количественных признаков. Большинство признаков, важных при разведении животных и выращивании растений, носит количественный характер. Количественные признаки мож­но изучать с помощью измерения и подсчета.

Живые организмы постоянно испытывают действие разно­образных факторов среды, в которой они обитают. Среда вли­яет на формирование и количественных, и качественных приз­наков.

2. Влияние условий среды на качественные признаки.Многие качественные признаки в меньшей степени, чем количествен­ные признаки, подвержены влиянию условий среды. Например, в семье, где отец и мать имеют голубой цвет глаз, рождаются только голубоглазые дети. При этом не имеет значения, в ка­ких условиях живет данная семья. Однако можно привести не­мало примеров, демонстрирующих влияние среды. У примулы окраска цветков определяется аллельной парой Rr. Гомозигот­ные растения RR обычно имеют красные цветки, но если в мо­мент формирования бутонов растение перенести из обычных ком­натных условий в теплую влажную оранжерею с температурой 30—35 °С, то появятся белые цветки. Возвращение в комнат­ные условия не изменяет их белой окраски, но вновь распус­тившиеся цветки будут красными. Понятно, что в этом случае изменился признак, а не ген.

Другим примером, показывающим влияние условий внешней среды на развитие качественных признаков, может служить из­менение окраски шерсти у горностаевого кролики. Горностаевые кролики (chch) и кролики-альбиносы (ее) при рождении не окрашены. Альбиносы остаются совершенно белыми в течение всей жизни, а у горностаевых кроликов лапки, хвост, уши и мор­дочка со временем окрашиваются в черный цвет.

Если у горностаевого кролика (рис. 40) сбрить шерсть на ка­ком-либо участке тела, то окраска вновь выросшей шерсти бу­дет зависеть от температуры среды. Так, если сбрить белую шерсть на боку или на спине и содержать животное при темпе­ратуре выше 2 °С, то на этом месте снова вырастет белая шерсть. При температуре воздуха ниже 2 °С вместо белой шерсти выра­стет черная. Но если сбрить шерсть на ухе, то в обычных ус­ловиях там снова вырастет черная шерсть; под согревающим компрессом (при температуре 30 °С) на выбритом участке выра­стет белая шерсть.

Эти опыты объясняют, почему горностаевые кролики рожда­ются совершенно белыми: в эмбриональный период они нахо­дятся в условиях высокой температуры.

3. Влияние условий среды на количественные признаки.Раз­витие количественных признаков очень сильно зависит от вли­яния условий среды. Масса тела у крупного рогатого скота, как и У Других животных, — типичный количественный признак. Установлено, что генотип оказывает важное влияние на форми­рование признака. Именно благодаря различиям в генотипе по­роды крупного рогатого скота резко отличаются по среднему значению, например, массы одного животного. Однако условия среды, например количество и качество корма, играют не ме­нее важную роль в формировании этого признака (рис. 41).

Известно, что количество и качество молока в сильной сте­пени зависят от правильности кормления коровы. Но значит ли это, что удой зависит только от кормления? Нет, такой вывод неверен. Известно, что некоторые породы скота дают в обыч­ных условиях в год 8001200кг молока. Улучшение кормле­ния и содержания этих животных может резко повысить их продуктивность до 2500 кг молока. Ухуд­шение условий может привести к тому, что ценная порода скота, дающая 4500— 5000 кг в год, снизит продуктивность до 2500 кг и даже ниже. Однако поднять продуктивность скота до 4000—5000 кг, улучшая только условия содержания, не­возможно.

4. Норма реакции.Итак, признаки раз­виваются в результате взаимодействия ге­нотипа и среды. Один и тот же генотип может в разных условиях среды давать разное значение признака. Пределы, в которых возможно изменение признаков у данного генотипа, называют нормой ре­акции. Иначе говоря, организм наследу­ет не признак как таковой, а способность формировать определенный фенотип в конкретных условиях среды, т. е. норму реакции (рис. 42).

На примере с молочным скотом мож­но отметить, что норма реакции молоч­ности местных пород скота колеблется от 1000 до 2500 кг, а у ценных пород она значительно выше — от 4000 до 6000кг молока в год и даже более. В таких случаях говорят, что приз­нак молочности у коров обладает широкой нормой реакции. Таким образом, фенотип каждой особи есть результат взаи­модействия ее генотипа с условиями окружающей среды.

Лекция. Закономерности изменчивости. Модификационная и наследственная изменчивость

План.

1. Модификационная изменчивость.

2. Типы наследственной изменчивости.

3. Применение наследственной изменчивости в с/ х.

1. Модификационная изменчивость.Разнообразие фенотипов, возникающих у организмов одинакового генотипа под влияни­ем условий среды, называют модификационной изменчивостью. Спектр модификационной изменчивости определяется нормой реакции. Примером модификационной изменчивости может слу­жить изменчивость генетически сходных (идентичных) особей. Многие виды растений, например картофель, обычно размножа­ются вегетативно, в этом случае все потомки обладают одина­ковым генотипом. Значит ли это, что все растения, выросшие на поле и происходящие от одного клубня, будут одинаковы? Нет, многие растения существенно отличаются по высоте, кус­тистости, количеству и форме клубней и другим показателям.

Эти фенотипические различия между генетически идентич­ными растениями обусловлены тем, что их развитие происхо­дило в различных условиях среды. Даже в пределах одной гряд­ки есть различия в уровне освещенности, увлажнения почвы, в количестве сорняков. Эти различия сказываются на развитии растений. Условия внешней среды изменяют особенности про­явления генов, но не сами гены. Многие гены отвечают за син­тез ферментов. Количество и набор микроэлементов в почве мо­гут сильно менять (модифицировать) активность ферментов и, следовательно, сказываться на росте и развитии растений. Од­нако эти модификации не наследуются, потому что гены, отве­чающие за развитие растений, не меняются в ответ на измене­ния температуры, влажности, характера питания. Вывод, что признаки, приобретенные в течение жизни организмов, не на­следуются, сделал крупный немецкий биолог А. Вейсман.

Иногда модификационная изменчивость называется ненаслед­ственной. Это верно в том смысле, что модификации не насле­дуются. Следует помнить, однако, что сама способность живых организмов к адаптивным модификациям — приспособительным изменениям — генетически обусловлена, выработана в резуль­тате естественного отбора.

Читайте также:  Повышенная температура в период беременности

2. Типы наследственной изменчивости.Наследственная измен­чивость — основа разнообразия живых организмов и главное условие их способности к эволюционному развитию. Механиз­мы наследственной изменчивости разнообразны. Основной вклад в наследственную изменчивость вносит генотипическая измен­чивость; существует также и цитоплазматическая изменчи­вость. Генотипическая изменчивость в свою очередь слагается из мутационной и комбинативной изменчивости. Ком­бинативная изменчивость — важнейший источник того беско­нечно большого наследственного разнообразия, которое наблю­дается у живых организмов.

В основе комбинативной изменчивости лежит половое раз­множение организмов, вследствие которого возникает огромное разнообразие генотипов. Генотип потомков, как известно, пред­ставляет собой сочетание генов, которые были свойственны ро­дителям. Число генов у каждого организма исчисляется тыся­чами. При половом размножении комбинации генов приводят к формированию нового уникального генотипа и фенотипа. У лю­бого ребенка можно обнаружить признаки, типичные для его матери и отца. Тем не менее даже среди близких родственни­ков не найти двух абсолютно одинаковых людей. Исключение составляют однояйцевые близнецы. В чем причины этого огром­ного разнообразия? Они лежат в явлении комбинативной измен­чивости. Рассмотрим основные ее истоки.

Независимое расхождение гомологичных хромосом в первом мейотическом делении — первая и важнейшая основа комбина­тивной изменчивости. Именно независимое расхождение хромо­сом, как вы помните (см. § 25), является основой третьего за­кона Менделя. Появление зеленых гладких и желтых морщи­нистых семян во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости екомбинация генов, основанная на явлении перекреста хро­мосом, — второй, тоже очень важный источник комбинативной изменчивости. Рекомбинантные хромосомы, попав в зиготу, вы­зывают появление комбинаций признаков, нетипичных для ро­дителей.

Третий важный источник комбинативной изменчивости — случайная встреча гамет при оплодотворении. В моногибрид­ном скрещивании возможны три генотипа: АА, Аа и аа. Каким именно генотипом будет обладать данная зигота, зависит от слу­чайной комбинации гамет.

3. Все три основных источника комбинативной изменчивости действуют независимо и одновременно, создавая огромное раз­нообразие генотипов. Однако новые комбинации генов не толь­ко легко возникают, но также и легко разрушаются при пере­даче из поколения в поколение. Именно поэтому часто в потом­стве выдающихся по качествам жцвых организмов появляются особи, уступающие родителям.

Для закрепления желательных признаков селекционеры ис­пользуют близкородственные скрещивания. Благодаря таким скрещиваниям возрастает вероятность встречи одинаковых га­мет, и могут возникнуть потомки с комбинацией генов, близ­кой к родительской комбинации. Таким путем созданы некото­рые породы животных и сорта растений.

Лекция. Мутационная изменчивость.

План.

1. Геномные мутации.

2. Хромосомные мутации.

3. Генные мутации.

4. Экспериментальное получение мутаций.

Мутации — это случайно возникшие стойкие изменения ге­нотипа, затрагивающие целые хромосомы, их части или отдель­ные гены. Они могут быть и полезны, и вредны, и нейтральны для организмов.

Основные положения мутационной теории,осно­вы которой были заложены нидерландским ботани­ком и генетиком Де Фризом (1848—1935):

— мутации — это дискретные изменения наслед­ственного материала;

— мутации — редкие события;

— мутации могут устойчиво передаваться из поко­ления в поколение;

— мутации возникают ненаправленно (спонтанно) и, в отличие от модификаций, не образуют непрерыв­ных рядов изменчивости;

— мутации могут быть вредными, полезными и ней­тральными.

1. Геномные мутации.Геномными называют мутации, приво­дящие к изменению числа хромосом. Наиболее распространен­ным типом геномных мутаций является полиплоидия — крат­ное изменение числа хромосом. У полиплоидных организмов гаплоидный (п) набор хромосом в клетках повторяется не 2 ра­за, как у диплоидов, а 4—6 раз, иногда значительно больше — до 10—12 раз.

Возникновение полиплоидов связано с нарушением митоза или мейоза. В частности, нерасхождение гомологичных хромо­сом в мейозе приводит к формированию гамет с увеличенным числом хромосом. У диплоидных организмов в результате тако­го процесса могут образоваться диплоидные (2ге) гаметы. Полиплоидные виды растений довольно часто обнаружива­ются в природе; у животных полиплоидия редка. Некоторые по­липлоидные растения характеризуются более мощным ростом, крупными размерами и другими свойствами, что делает их цен­ными для генетико-селекционных работ.

2. Хромосомные мутации.Хромосомные мутации — это пере­стройки хромосомы. Многие из хромосомных мутаций доступ­ны изучению под микроскопом. Пути изменения структуры хро­мосом разнообразны. Участок хромосомы может удвоиться или, наоборот, выпасть, он может переместиться на другое место и т. д. Рассмотрим основные типы хромосомных мутаций:

Хромосомные мутации приводят к изменению функциониро­вания генов. Они играют серьезную роль в эволюционных пре­образованиях видов.

3. Генные мутации.Генные, или точковые, мутации — наибо­лее часто встречающийся класс мутационных изменений. Ген­ные мутации связаны с изменением последовательности нуклеотидов в молекуле ДНК. Они приводят к тому, что мутантный ген либо перестает работать и тогда не образуются соответству­ющие РНК и белок, либо синтезируется белок с измененными свойствами, что проявляется в изменении каких-либо призна­ков организма. Вследствие генной мутации образуются новые аллели. Это имеет важное эволюционное значение.

Мутации — редкие события. На 10 000 — 1 000 000генов оп­ределенного типа в среднем возникает одна новая мутация. Хо­тя мутационные события происходят редко, но благодаря посто­янству естественного мутационного процесса и способности ви­дов накапливать мутации генотипы всех без исключения особей содержат значительное количество генных мутаций.

Генные мутации следует рассматривать как результат «оши­бок», возникающих в процессе удвоения молекул ДНК.

Изучение мутационного процесса показало, что изменяться — мутировать — могут все гены, контролирующие развитие любо­го признака организма. Многие генные мутации вредны для ор­ганизма, часть нейтральны, а некоторые из них в определенных условиях жизни могут становиться полезными.

4. Экспериментальное получение мутаций.Отечественные гене­тики первыми обнаружили, что ультрафиолетовые лучи и неко­торые вещества — мощные факторы, способные’ вызвать мута­ции у самых различных организмов. Резкое повышение числа вновь возникающих мутаций вы­зывает действие лучей Рентгена. Американский генетик Г. Мёллер, работавший несколько лет в нашей стране, разработал ме­тоды учета возникающих мутаций и впервые эксперименталь­но доказал эффективность лучей Рентгена для повышения час­тоты мутационного процесса в сотни раз.

Большую генетическую опасность для всех живых организ­мов несет радиоактивное излучение, что стало причиной заклю­чения договора о прекращении испытаний ядерного оружия в воздухе, на земле и в воде.

В настоящее время интенсивно ведутся работы по созданию методов направленного воздействия химических и физических факторов на определенные гены. Эти исследования очень важ­ны, так как искусственное получение мутаций нужных генов имеет большое практическое значение для селекции растений, животных и микроорганизмов.

Мутагенные факторы среды подразделяются на три группы: физические, химические и биологические. Ионизирующее излучение — самый эффективный фи­зический мутаген. Значительно меньшим мутагенным воздействием характеризуется ультрафиолетовое из­лучение. Слабым эффектом обладает повышенная тем­пература. Химические мутагены вызывают главным образом точковые, или генные, мутации. К биологиче­ским мутагенам относится воздействие некоторых ви­русов.

Общие свойства мутагенов:

— универсальность, т. е. способность вызывать му­тации во всех живых организмах;

—- отсутствие нижнего порога мутационного дей­ствия, т. е. способность вызывать мутации при дейст­вии в любых малых дозах;

— ненаправленность возникающих мутаций,

Прокрутить вверх

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник