Электродвигателя с повышенной температурой

Электродвигателя с повышенной температурой thumbnail

Электродвигатель греется, когда работает. Это общеизвестный факт.

Если правильно выбран режим нагрузки и охлаждение, двигатель может работать годами.

Воздушное охлаждение. Кто первый напишет в комментарии, что не так на этой фотографии?

Но практически имеет ценность только вопрос, какая температура является критичной, а при какой можно не беспокоиться. Рассматривать будем только асинхронные трехфазные электродвигатели, как наиболее широко распространенные.

Для начала посмотрим, что говорят официальные источники.

Что греется в электродвигателе

Основной источник нагрева – обмотка статора. Как и любая катушка, намотанная проводом, она греется. И максимальная температура нагрева ограничена температурной стойкостью изоляции обмоточного провода.

Термическая стойкость провода характеризуется параметром класс нагревостойкости. По этим классам максимальные температуры обозначаются буквами:

Y, A, E, B – эти классы не терпят температуры выше 130 гр, сейчас двигателя с такими обмотками практически не выпускаются.

F – 155 гр – именно с таким классом изготавливается большинство современных двигателей

Н – 180 гр – это уже двигатели спец.исполнения, которые работают в тяжелых условиях – например, в горячих цехах и под палящим солнцем.

Температуры максимума по классам в разных справочниках могут разниться, это зависит от скорости нагрева и условий применения.

Температуры по ГОСТ

Второй источник внутреннего нагрева – подшипники. Подшипники будут греться только тогда, когда они неисправны, либо работают в запредельных режимах.

Причины перегрева

Если с подшипниками всё понятно, то электрических причин может быть много. Вот несколько причин нагрева двигателя:

  1. перекос фаз
  2. пониженное или повышенное напряжение
  3. обрыв фазы (питания или внутри двигателя)
  4. межвитковое замыкание
  5. замыкание на корпус
  6. поломка крыльчатки (отсутствие охлаждения)
  7. высокая температура рабочей среды
  8. неправильная схема подключения
  9. перегрузка в механике привода

В любом случае, допускать двигатель до перегрева не должен мотор-автомат (автомат защиты двигателя), тепловое реле, позистор.

Как измерить температуру двигателя?

Есть несколько способов.

  1. Рука. Да, рука терпит температуру до 60 гр, дальше – больно. Проверено на практике
  2. Нос. Если температура больше 80 гр, начитает “пахнуть жареным”. Начинает интенсивно испаряться масло, пахнуть пыль, краска, и т.п.
  3. Термометр с контактным датчиком. Более точный способ, но может быть проблематично или опасно залезть в некоторые места
  4. Термометр с дистанционным датчиком (ИК). Более простой и безопасный способ, но бывает большая погрешность.
  5. Тепловизор. Лучший способ для оперативной проверки. Сразу видна вся картина.
  6. Встроенные датчики. Это могут быть термопары, терморезисторы или позисторы. Можно завести на температурный контроллер или индикатор, а можно – на пороговое устройство, выключающее двигатель по аварии. Лучший способ для постоянного и оперативного контроля температуры двигателя.

Требования к позисторам

Какой способ контроля используете вы?

Какая температура критичная?

Безусловно, при температуре корпуса двигателя +30 он будет работать лучше и дольше, чем при +100 гр. Но и та, и другая температура допускается.

Критичные температуры двигателей

Но до +100 гр. можно спокойно работать и не беспокоиться, а после – нужно обязательно выяснять причину и принимать меры.

Из этого вытекает правило – электрику, ответственному за электрохозяйство, нужно регулярно делать обходы и проверять состояние двигателей и оборудования в целом.

Как у вас с этим на заводе? Расскажите в комментариях!

Статьи в тему двигателей

Если дочитали до сюда, значит тема двигателей вам интересна. Вот, что у меня ещё есть на Дзене:

Если интересны темы канала, заходите также на мой сайт – https://samelectric.ru/ и в группу ВК – https://vk.com/samelectric

Не забываем подписываться и ставить лайки, впереди много интересного!

Источник

Рабочая температура электродвигателя (в дальнейшем ЭД) определяется в первую очередь классом нагревостойкости изоляции обмоток. И её контроль очень важен. При перегреве электродвигатель может быть повреждён.

Классы нагревостойкости изоляции обмоток

Обмотки – наименее устойчивая к нагреву часть конструкции электродвигателя. Поэтому предел рабочей температуры всего устройства определяется именно температурой, при которой они перегорают.

Выделяют следующие классы нагревостойкости изоляции обмоток:

  • У (максимальная температура – 90 градусов Цельсия). Обмотки выполняются из бумаги или натуральных тканей без дополнительной изоляционной пропитки;
  • А (максимальная температура – 105 градусов Цельсия). Обмотки бумажные или из натуральных тканей с дополнительной изоляционной пропиткой;
  • Е (максимальная температура – 120 градусов Цельсия). Обмотки из органической плёнки синтетического происхождения;
  • B (максимальная температура – 130 градусов Цельсия). Обмотки из стекловолокна или минеральных составов;
  • F (максимальная температура – 155 градусов Цельсия). Обмотки из стекловолокна или минеральных составов с синтетической связующей пропиткой;
  • H (максимальная температура – 180 градусов Цельсия). Обмотки из стекловолокна или минеральных составов с кремнийорганической связующей пропиткой;
  • С (максимальная температура от 180 градусов Цельсия). Обмотки из термоустойчивых материалов с неорганической связующей пропиткой или без неё.

Если рабочая температура асинхронного двигателя слишком мала, то перевести его на более высокий класс нагревостойкости можно лишь при капитальном ремонте с заменой обмоток.

Рабочая температура подшипников электродвигателей

Кроме обмоток, к температурным условиям работы также очень чувствительны и подшипники электродвигателя. Установленные нормы нагрева следующие:

  • Подшипники качения – 95-100 градусов Цельсия;
  • Подшипники скольжения – 80-85 градусов Цельсия;
  • Стальные детали коллектора и контактных колец – 105-110 градусов Цельсия. 

При достижении критических значений температуры подшипника необходимо либо уменьшить нагрузку на используемый ЭД, либо организовать систему охлаждения.

Температурный режим эксплуатации электродвигателей

Нормальные значения температуры внешней среды, при которых электродвигатель работает с номинальной мощностью, определяются климатическим исполнением ЭД. Так, машины с исполнением У1 и ХЛ1 предназначены для эксплуатации при температуре внешней среды до +40 градусов Цельсия, У3 и Т2 – до +45 градусов Цельсия, Т1 – до +50 градусов Цельсия. Если температура внешней среды превышает данный параметр и организовать охлаждение не получится, то необходимо снизить нагрузку на используемый электродвигатель.

Читайте также:  Повышенная базальная температура в первом цикле

Для контроля за температурным режимом следует отслеживать напряжение в питающей сети. При его снижении до 95% от номинального и ниже на ЭД подаётся повышенный ток, что приводит к перегреву устройства. Аналогичное явление наблюдается и при повышении напряжения до 110% и выше от номинального, поскольку вихревые потоки приводят к нагреву статора.

Согласно статистике, срок службы изоляции при повышении температуры на 8 градусов выше допустимой нормы вдвое снижает её эксплуатационный период. Поэтому, для сохранения работоспособности машины, стоит выяснить допустимую рабочую температуру, не допускать перегрева и превышения (либо снижения) токовых нагрузок.

Источник

Ознакомьтесь с нашими руководствами по покупке

{{#pushedProductsPlacement4.length}}
{{#each pushedProductsPlacement4}}

{{#if product.activeRequestButton}}

{{/if}}

{{product.productLabel}}

{{product.model}}

{{#each product.specData:i}}
{{name}}: {{value}}
{{#i!=(product.specData.length-1)}}

{{/end}}
{{/each}}

{{{product.idpText}}}

{{productPushLabel}}

{{#if product.newProduct}}

{{/if}}
{{#if product.hasVideo}}

{{/if}}

{{/each}}
{{/pushedProductsPlacement4.length}}

{{#pushedProductsPlacement5.length}}
{{#each pushedProductsPlacement5}}

{{#if product.activeRequestButton}}

{{/if}}

{{product.productLabel}}

{{product.model}}

{{#each product.specData:i}}
{{name}}: {{value}}
{{#i!=(product.specData.length-1)}}

{{/end}}
{{/each}}

{{{product.idpText}}}

{{productPushLabel}}

{{#if product.newProduct}}

{{/if}}
{{#if product.hasVideo}}

{{/if}}

{{/each}}
{{/pushedProductsPlacement5.length}}

Мощность: 0,55 kW – 675 kW

… Двигатели вентиляторов Emerson LSHT/FLSHT используются для вытяжки дыма. Он строго соответствует европейским стандартам EN 12101-3 по безопасности дымоудаления и оснащен компактным колодочным двигателем IC418 и высокотемпературными выходными …

двигатель для высоких температур

DELFIRE

Мощность: 0,25 kW – 30 kW

Для температуры окружающей среды 100 ° C, непрерывный режим S1

«Delfire» – это инновационная линейка трехфазных электродвигателей, специально разработанных для работы при температуре окружающей среды 100 ° C, например, в вентиляционных …

двигатель со встроенным регулятором скорости

NERIDRIVE series

Мощность: 0,18 kW – 7,5 kW

… NERIDRIVE – это серия двигателей со встроенным преобразователем частоты, который с электронным управлением выдерживает высокие температуры, большую нагрузку и сильную вибрацию.
Встроенный в двигатель преобразователь частоты, помимо простоты …

двигатель для дымоудаления

F series

Мощность: 250, 200 kW
Скорость вращения: 3 000, 1 500, 1 000, 750 rpm

ИНФОРМАЦИЯ О ПРОДУКТЕ

во всевозможных местах скопления людей или демонстрации промышленного оборудования устранение опасности возгорания и обеспечение безопасности являются наиболее важными вопросами для проектировщиков и строителей …

двигатель для высоких температур

… Двигатели с высокотемпературной механикой
Двигатели, подходящие для высоких температур.
Возможность замены подшипников без демонтажа ведомого вала.
Специальный чугунный фланец для простого обслуживания.
Двигатели для работы вентиляторов, …

двигатель для дрона

MN501-S series

Момент: 0,06 Nm – 1,2 Nm
Мощность: 1 000, 1 200 W
Скорость вращения: 1 914 rpm – 9 870 rpm

… Дизайн охлаждения
Парящий в горячем небе
Конструкция радиального вентилятора крышки колокольчика активно охлаждает двигатель.
Теплоотдача на 10% лучше, чем у обычных двигателей.
Ручной подзавод со специальными лакированными проводами …

Показать другие изделия
T-MOTOR

двигатель для дрона

MN805-S series

Момент: 0,95 Nm – 5,42 Nm
Мощность: 3 200, 3 600, 4 000 W
Скорость вращения: 1 828 rpm – 5 758 rpm

… Парящий в горячем небе
С центробежным вентилятором со структурой крышки колокола. двигатель охлаждается быстрее и активнее. База с ламельным дизайном увеличивает площадь рассеивания тепла, значительно повышая эффективность охлаждения …

Показать другие изделия
T-MOTOR

двигатель DC

MN6007 series

Момент: 0,29 Nm – 1,3 Nm
Мощность: 864, 936 W
Скорость вращения: 2 612 rpm – 5 231 rpm

… Время полета до 50 минут
Надежная производительность для множества приложений геодезической съемки в различных условиях.

Могучая сила для аэрофотосъемки
Захват красоты ttiat принадлежит Размер солнца и спокойствия ii Макс. тяги до 5,5 …

Показать другие изделия
T-MOTOR

двигатель плоского типа

GM Series

Момент: 0,36 Nm – 3,2 Nm
Мощность: 113 W – 1 000 W
Скорость вращения: 3 000 rpm

… Серия GM (высокоточная компактная серия) представляет собой чрезвычайно точный ряд мощных блинных двигателей с возможностью работы при высокой температуре окружающей среды (150C, 302F), предназначенных для высокопроизводительных промышленных …

Показать другие изделия
Pinted Motor Works

двигатель для высоких температур

… Начиная с нашего обширного стандартного ассортимента двигателей и приводов, мы работали с нашими клиентами над разработкой и комплектацией большого количества индивидуальных решений в области приводов.

В частности, вы получаете выгоду …

двигатель для высоких температур

SVTM 80B42 series

Момент: 2 Nm – 6 Nm
Скорость вращения: 3 000 rpm

… В некоторых случаях серводвигатели должны быть устойчивы к воздействию высоких температур, как при работе, так и в состоянии покоя. Серия SVTM80B42 способна работать в среде с температурой выше 200°С.

Он также может выдерживать давление …

Источник

Электродвигателя с повышенной температурой Одной из причин выхода электродвигателей из строя раньше срока, на который он рассчитан, является перегрев. Высокая температура в первую очередь влияет на материал электроизоляции. В результате она становится ломкой, сыпется или даже выгорает, если нагрев электродвигателей превышает допустимые значения. В итоге — короткое замыкание, потеря мощности, поломка силового агрегата. Чтобы этого не допустить, необходимо разобраться в основных причинах, приводящих к перегреву оборудования.

Причины нагрева двигателей

В промышленности основная часть электродвигателей работает при постоянной нагрузке. К их перегреву могут привести:

  • пуск под нагрузкой, к которой двигатель не готов;
  • неправильный режим работы;
  • высокая систематическая нагрузка;
  • обрыв одной из фаз двигателя;
  • заклинивание подшипников вала.
Читайте также:  Повышенная или пониженная температура поверхностей оборудования

Каждый механизм, укомплектованный электродвигателем определенной мощности, которая требуется для выполнения определенных задач. Попытка выполнить объем работы в более сжатые сроки приводит к такому явлению, как аварийные перегрузки, с которыми оборудование не справляется и выходит из строя. Чтобы этого избежать — необходимо строго следовать технологии производственного процесса.

Постоянные высокие нагрузки на пределе нормы также вызывают нагрев двигателя, защитить его можно системой безопасности, оказывающей влияние не на режим работы силового агрегата, а на скорость подачи сырья. Также следует обращать внимание на то, что оборудование должно работать в определенных условиях. Если двигатели дымососов должны работать при закрытых шиберах, то необходима система, препятствующая их открытию при низкой температуры воздуха.

Изоляция электродвигателей

Слабым звеном при перегреве двигателя является изоляция обмоток, при высокой температуре ухудшаются ее эксплуатационные характеристики. Чем выше степень нагрева, тем быстрее меняются в отрицательную сторону диэлектрические и механические свойства материалов. Изоляционные материалы, применяемые в электрических машинах, подразделяют на семь классов: У, А, Е, В, F, Н, С, предельно допустимая температура которых соответственно равна 90°, 105°, 120°, 130°, 155°, 180°, больше 180 °С.

Если к классу У относятся волокнистые материалы из шелка, целлюлозы, то класс С — это дорогие керамические материалы, иногда применяемые с кремнийорганическим связующим. Тщательно подбирая допустимую температуру нагрева обмоток к технологическим параметрам двигателя, можно существенно продлить срок его эксплуатации. При выборе необходимо учитывать не только максимально допустимую рабочую температуру, но и условия эксплуатации. Если некоторые двигатели имеют естественное охлаждение воздухом, то в большинстве случаев они надежно спрятаны под кожухами, где нет вентиляции.

Влияние температуры на срок службы двигателя

Как влияет нагрев двигателей на срок их эксплуатации? Этот вопрос настолько серьезен, что были проведены серьезные исследования. Они выявили, что перегрев всего на 10 градусов сокращает срок службы изоляционных материалов в два раза. Следующие 10 градусов укорачивают этот показатель еще в два раза. В итоге при перегревании электродвигателя на 40 градусов срок эксплуатации изоляции сокращается в 32 раза, что делает ресурс оборудования настолько минимальным, что его применение становится нерентабельным. Если перегрузки превышают допустимые на 50 %, то можно говорить о почти моментальном разрушении изоляционных материалов. Это лишний раз подчеркивает важность правильного выбора режима работы электродвигателя.

Источник

« Назад

Нагрев электродвигателей классы изоляции  10.07.2006 17:25

Во время работы электродвигателей происходит их нагрев. Температура нагрева может быть разной, т.е. одни двигатели нагреваются меньше, другие – больше. Величина установившейся температуры двигателя за­висит от нагрузки на его валу. При большой нагрузке выделяется большое количество теплоты в единицу вре­мени, значит, выше установившаяся температура двига­теля. Допустимый нагрев электрических двигателей зависит от класса изоляции обмоток.

На табличке электродвигателя со всеми данными указан и параметр, называемый  класс изоляции. 

Нагревостойкость — одно из самых важных качеств электроизоляционных материалов, так как она определяет допустимую нагрузку электрических машин и аппаратов. Способность электроизоляционных материалов выдержать без вреда для них воздействие повышенной температуры, а также резкие смены температуры называется нагревостойкостью. Необходимо знать, что с повышением температуры обмоток электродвигателей сверх допустимых значений, резко сокращается срок службы изоляции. По этому, нагревостойкость изоляции является основным требованием, определяющим надежность работы и срок службы электрической машины, который нормально должен составлять 15—20 лет. 

Электрические машины с изоляцией класса А практически не изготовляются, а класса Е — находят ограниченное применение в машинах малой мощности. Применяют в основном изоляцию классов В и F, а в специальных машинах, работающих в тяжелых условиях (металлургия, горное оборудование, транспорт),— класса Н. В результате использования более нагревостойких материалов, улучшения свойств электротехнических сталей и улучшения конструкций за последние 60—70 лет удалось уменьшить массу электрических машин в 2,5—3 раза. Электродвигатель купить Аросна

При неизменной нагрузке на валу в двигателе выде­ляется определенное количество теплоты в единицу вре­мени. 

Предельные допустимые превышения температуры активных частей электродвигателей

 folders_v5-lin t0graph_v5-lin  (при температуре окружающей среды 40ºС):

  1. Класс E: допустимая температура нагрева до 120°C.
  2. Класс B: допустимая температура нагрева до 130°C.
  3. Класс F: допустимая температура нагрева до 155°C.
  4. Класс H: допустимая температура нагрева до 180°C.

Подробнее о классах нагревостойкости изоляции см Статью Класс нагревостойкости изоляции

В таблице приведены в качестве примера предельно допускаемые превышения температуры  для отдельных частей электрических машин общего применения (О) и тяговых (Т) при продолжительном режиме работы при измерении температуры обмоток по методу сопротивления (т. е. по измерению сопротивления соответствующей обмотки в результате нагрева), а температуры коллектора и контактных колец с помощью термометров. Эти данные соответствуют температуре окружающей среды +40 °С для машин О и +25 °С для машин Т.

Части машинПредельно допустимые превышения температуры, 0С, при классе изоляции
AEBFHAEBFH
общего Отяговых Т
Обмотка якоря машин постоянного тока и обмотки синхронных машин переменного тока60758010012585105120140160
Многослойные обмотки возбуждения машин постоянного и переменного тока, компенсационные обмотки60758010012585115130155180
Однорядные обмотки возбуждения с неизолированными поверхностями65809011013585115130155180
Коллекторы и контактные кольца6070809010095959595105
check_colorТемпературой окружающего воздуха, при которой общепромышленный электродвигатель может работать с номинальной мощностью, считается 40ºС. 

Если температура окружающей среды больше или меньше +40 для общепромышленного исполнения электродвигателя, то стандарт разрешает определенные изменения допустимых превышений температур. 

Читайте также:  Какая температура считается повышенной у коровы
alarm-2_colorПри повышении температуры окружающего воздуха более 40ºС, нагрузка на электродвигатель должна быть снижена настолько, чтобы температура отдельных его частей не превышала допустимых значений.  При работе машины в горных местностях, где из-за понижения атмосферного давления ухудшается теплоотдача, стандарт предусматривает некоторое уменьшение допустимых превышений температуры.

Независимо от снижения температуры окружающего воздуха,увеличивать токовые нагрузки более чем на 10% номинального не допускается. У асинхронных двигателей на это может влиять изменение напряжения питающей сети, вместе с уменьшением напряжения питающей сети, в квадрате уменьшается мощность на валу двигателя и кроме того, уменьшение напряжения ниже 95% от номинального приводит к значительному росту тока двигателя и нагреву обмоток. Рост напряжения выше 110% от номинального также ведет к росту тока в обмотках двигателя, увеличивается нагрев статора за счет вихревых токов. 

При повышении температуры многие из материалов начинают обугливаться и становятся проводниками. Все материалы от длительного воздействия повышенных температур задолго до обугливания приобретают хрупкость, легко разрушаются и теряют свои изолирующие свойства. Этот процесс называется тепловым старением. Опыт показывает, что повышение температуры изоляции на 10 °С сокращает срок ее службы примерно в два раза. Так, для изоляции класса А повышение температуры с 95 до 105 °С сокращает срок ее службы с 15 до 8 лет, а нагрев до 120 °С — до двух лет. В основе этого явления лежит общий закон зависимости скорости химических реакций от температуры, описываемый уравнением Ван-Гоффа-Аре-ниуса.

То есть технологические перегрузки рабочих машин или колебания напряжения в питающей сети ведут за собой увеличение тока в обмотках машин и превышение температуры обмоток выше допустимых для данного класса, в результате срок службы машин быстро уменьшается. 

Приведенные предельные температуры нагрева для отдельных классов изоляции не могут быть полностью использованы в практике, так как в условиях эксплуатации электрических машин и аппаратов не представляется возможным установить точный контроль за температурой изоляции наиболее нагретых деталей.

Электродвигатели купить двигатель электромотор АроснаПоэтому существующие стандарты на электрические машины устанавливают более низкие пределы допускаемых температур отдельных деталей машин в зависимости от конструкции этих деталей и расположения их в машине. Нормируют не сами температуры, а максимально допустимые превышения температур ?max, так как от нагрузки машины зависит только превышение температуры.
В производственных условиях измерение температуры узлов электрических машин и электроаппаратуры выполняется непосредственно термометром или косвенно на основе измерения их сопротивления.check_color

 Контроль температуры нагрева электродвигателей мощностью выше 100 кВт проводят с помощью встроенных дистанционных термометров. Для измерения температуры электродвигателей меньшей мощности, а также для измерения температуры в точках электродвигателей, где установка дистанционных термометров невозможна, пользуются переносными спиртовыми или ртутными термометрами. При измерениях ртутными термометрами следует иметь в виду, что в области переменных магнитных полей возникает положительная погрешность, т. е. термометр покажет завышенное значение температуры. Для более точного измерения температуры нижнюю часть термометра обвертывают тонкой алюминиевой фольгой, обминая ее так, чтобы прилегание к месту измерения было плотным. Сверху оболочку из фольги накрывают для теплоизоляции ватой. В труднодоступных местах измерения проводят сразу после остановки электродвигателя.

Методом сопротивления измеряют среднюю температуру. Он основан на изменении сопротивления проводника с изменением его температуры. Замеряя сопротивление проводника в холодном и горячем состоянии, рассчитывают температуру проводника.

Повышение температуры двигателя происходит неравномерно. Вначале она возрастает быстро: почти вся теплота идет на повышение температуры, и лишь малое количество ее уходит в окружающую среду. Пе­репад температур (разница между температурой дви­гателя и температурой окружающего воздуха) пока еще невелик. Однако по мере увеличения температуры дви­гателя перепад возрастает и теплоотдача в окружающую среду увеличивается. Рост температуры двигателя за­медляется.

Температура двигателя прекращает возрас­тать, когда вся вновь выделяемая теплота будет пол­ностью рассеиваться в окружающую среду. Такая темпе­ратура двигателя называется установившейся. Величина установившейся температуры двигателя за­висит от нагрузки на его валу. При большой нагрузке выделяется большое количество теплоты в единицу вре­мени, значит, выше установившаяся температура двига­теля.

После отключения двигатель охлаждается. Темпера­тура его вначале понижается быстро, так как перепад ее большой, а затем по мере уменьшения перепада – медленно.

Величина допустимой установившейся температуры двигателя обусловливается свойствами изоляции обмо­ток. Подробнее Статья  Класс нагревостойкости изоляции смотреть

В отдельных точках частей машины температура может быть выше средней. Так, например, в открытых машинах с воздушным охлаждением, у которых хорошо охлаждаются лобовые части обмоток, пазовые части нагреваются больше, чем лобовые. Превышения температуры в отдельных наиболее нагретых точках должны быть не более: 65 ° — для изоляции класса А, 90 °С — для изоляции класса В, ПО и 135 °С — соответственно для изоляции классов F и Н.

Чувствительными к нагреву являются и некоторые механические узлы и детали электродвигателей. Для них в паспортах электродвигателей задаются допустимые превышения температур над температурой окружающей среды 35 °С. Допустимые превышения температуры для подшипников качения составляют 60°С, для подшипников скольжения — 45°С, для стальных деталей коллекторов и контактных колец — 70°С. Температуру подшипников скольжения можно измерить, погружая термометр непосредственно в масло подшипника.

При достаточном навыке ориентировочное представление о степени нагрева можно получить, притрагиваясь ладонью к нагретому элементу конструкции (ладонь без болевых ощущений обычно выдерживает температуру около 60°С), но важно помнить прежде всего безопасность.

Предельные допустимые превышения температуры частей электрических машин при температуре газообразной охлаждающей среды 40 °С и высоте над уровнем моря не более 1000 м должны быть не более значений, указанных в таблице. При т