Может ли внутренняя энергия измениться без изменения температуры

Может ли внутренняя энергия измениться без изменения температуры thumbnail

Так как любое тело состоит из молекул, молекулы из атомов, а атомы из ядер и электронов, то внутренняя энергия тела определяется суммарной кинетической и потенциальной энергиями его молекул и внутримолекулярной энергией (атомной, ядерной и др.)

Кинетическая энергия молекул определяется скоростью их хаотического движения (в твёрдых кристаллических телах колебательного движения молекул около положений равновесия; в жидкостях колебательного и поступательного движения молекул; в газах – поступательного движения молекул).

Скорость хаотического движения молекул определяется температурой тела – чем выше температура, тем больше скорость хаотического движения молекул.

Потенциальная энергия молекул определяется их взаимодействием (притяжением, отталкиванием), зависящем от расстояния между молекулами (см. занятие 33).

Твёрдые тела и жидкости при повышении температуры расширяются, значит их внутренняя энергия зависит и от температуры, и от объёма:

В газах молекулы находятся далеко друг от друга и практически не взаимодействуют, поэтому внутренняя энергия газа (идеального, разрежённого) зависит только от температуры:

С повышением температуры тела на

его внутренняя энергия увеличивается на

то есть изменение внутренней энергии тела определяется изменением его температуры. Здесь не рассматриваем случаев, когда происходит изменение агрегатного состояния вещества (плавления и т. д.)

Из опытов знаем, что при совершении работы над телом (например, сгибание и разгибание проволоки) температура тела повышается.

Известно ещё, что работа по преодолению сил трения (сопротивления) сопровождается повышением температуры трущихся поверхностей. Возник вопрос, какая количественная связь существует между произведённой механической работой и изменением температуры проволоки и трущихся поверхностей.

Ответ на этот вопрос дал Джоуль в середине 19 века по результатам проведённых им опытов. Джоуль пользовался установкой, схематически изображённой на рисунке

В сосуде с водой, под действием опускающейся гири, приводились во вращение лопасти 1, проходящие через отверстия в перегородках 3. Вращаясь, лопасти увлекали за собой воду, вызывая трение между её слоями, в результате вода нагревалась. Так как в начале и в конце опыта кинетическая энергия воды и всех частей прибора равна нулю, то есть не изменялась, то вся произведённая работа, равная

вызывала только нагревание воды и частей прибора. Нагревание частей прибора сводилось к нагреванию воды с использованием понятия водяного эквивалента. Эти опыты и множество подобных дали одинаковый результат.

А именно, если при исчезновении механической энергии не происходит никаких изменений в состоянии тел, кроме изменения температуры, то за счёт энергии, равной 4,18 кДж, температура 1 кг воды всегда повышается на 1 К.

Иначе можно сказать, чтоуменьшение механической энергии сопровождается увеличением внутренней энергии на такую же величину (проявляется всеобщий характер закона сохранения энергии) или совершение работы над системой приводит к увеличению её внутренней энергии.

Пример. Пусть система состоит из свинцовой пластинки и свинцового шарика, поднятого над этой пластинкой. Энергия системы состоит из потенциальной энергии шарика и внутренней энергии шарика и пластинки. При падении на пластинку шарик и пластинка нагреваются (повышается их внутренняя энергия). На сколько уменьшится потенциальная энергия шарика, на столько же увеличится внутренняя энергия системы шарик – пластинка, а полная энергия системы останется неизменной.

Таким образом, энергия может переходить из одного вида в другой, передаваться от одного тела к другому, но общая энергия остаётся постоянной.

Если говорить об идеальном газе, то его внутренняя энергия равна суммарной кинетической энергии его молекул (см. занятие 35).

Таким образом, рассмотрено понятие внутренней энергии, её связь с температурой. Получено выражение для нахождения внутренней энергии идеального газа.

К.В. Рулёва Подпишитесь на канал. Просьба дать информацию о нём своим друзьям.

Предыдущая запись: продолжение занятия 36

Следующая запись: школьникам (количество теплоты)

Смотрите ещё:

Занятие 36. Основы термодинамики. Количество теплоты. Внутренняя энергия идеального газа.

Занятие 37. Первый закон термодинамики.

Ссылки на другие занятия даны в Занятии 1.

Источник

Внутренняя энергия тела не может являться постоянной величиной. Она может изменяться у любого тела. Если повысить температуру тела, то его внутренняя энергия увеличится, т.к. увеличится средняя скорость движения молекул. Таким образом, увеличивается кинетическая энергия молекул тела. И, наоборот, при понижении температуры, внутренняя энергия тела уменьшается.

Можно сделать вывод: внутренняя энергия тела изменяется, если меняется скорость движения молекул. Попытаемся определить, каким методом можно увеличить или уменьшить скорость передвижения молекул. Рассмотрим следующий опыт. Закрепим на подставке латунную трубку с тонкими стенками. Наполним трубку эфиром и закроем его пробкой. Затем обвяжем его веревкой и начнем интенсивно двигать веревкой в разные стороны. Спустя определенное время, эфир закипит, и сила пара вытолкнет пробку. Опыт демонстрирует, что внутренняя энергия вещества (эфира) возросла: ведь он изменил свою температуру, при этом закипев.

Увеличение внутренней энергии произошло за счет совершения работы при натирании трубкой веревкой.

Как мы знаем, нагревание тел может происходить и при ударах, сгибании или разгибании, говоря проще, при деформации. Во всех приведенных примерах, внутренняя энергия тела возрастает.

Читайте также:  Кашель на зубы без температуры

Таким образом, внутреннюю энергию тела можно увеличить, совершая над телом работу.

Если же работу выполняет само тело, его внутренняя энергия уменьшается.

Рассмотрим еще один опыт.

В стеклянный сосуд, у которого толстые стенки и он закрыт пробкой, накачаем воздух через специально проделанное отверстие в ней.

Спустя некоторое время пробка вылетит из сосуда. В тот момент, когда пробка вылетает из сосуда, мы сможем увидеть образование тумана. Следовательно, его образование обозначает, что воздух в сосуде стал холодным. Сжатый воздух, который находится в сосуде, при выталкивании пробки наружу совершает определенную работу. Данную работу он выполняет за счет своей внутренней энергии, которая при этом сокращается. Делать выводы об уменьшении внутренней энергии можно исходя из охлаждения воздуха в сосуде. Таким образом, внутреннюю энергию тела можно изменять путем совершения определенной работы.

Однако, внутреннюю энергию возможно изменить и иным способом, без совершения работы. Рассмотрим пример, вода в чайнике, который стоит на плите закипает. Воздух, а также другие предметы в помещении нагреваются  от радиатора центрального направления. В подобных случаях, внутренняя энергия увеличивается, т.к. увеличивается температура тел. Но работа при этом не совершается. Значит, делаем вывод, изменение внутренней энергии может произойти не из-за совершения определенной работы.

Рассмотрим еще один пример.

В стакан с водой опустим металлическую спицу. Кинетическая энергия молекул горячей воды, больше кинетической энергии частиц холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. Таким образом, энергия молекул воды будет определенным образом уменьшаться, тем временем как энергия частиц металла будет повышаться. Температуры воды понизится, а температуры спицы не спеша, Теплопередачабудет увеличиваться. В дальнейшем, разница между температурой спицы и воды исчезнет. За счет этого опыта мы увидели изменение внутренней энергии различных тел. Делаем вывод: внутренняя энергия различных тел изменяется за счет теплопередачи.

Процесс преобразования внутренней энергии без совершения определенной работы над телом или самим телом называется теплопередачей.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Остались вопросы?

Задайте свой вопрос и получите ответ от профессионального преподавателя.

Источник

Может ли внутренняя энергия измениться без изменения температуры

1. Существуют два вида механической энергии: кинетическая и потенциальная. Кинетической энергией обладает любое движущееся тело; она прямо пропорциональна массе тела и квадрату его скорости. Потенциальной энергией обладают взаимодействующие между собой тела. Потенциальная энергия тела, взаимодействующего с Землёй, прямо пропорциональна его массе и расстоянию между
ним и поверхностью Земли.

Сумма кинетической и потенциальной энергии тела называется его полной механической энергией. Таким образом, полная механическая энергия зависит от скорости движения тела и от его положения относительно того тела, с которым оно взаимодействует.

Если тело обладает энергией, то оно может совершить работу. При совершении работы энергия тела изменяется. Значение работы равно изменению энергии.

2. Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать воздух (рис. 67), то через какое-то время пробка из банки вылетит и в банке образуется туман.

Это объясняется тем, что в воздухе, находящемся в банке, присутствует водяной пар, образующийся при испарении воды. Появление тумана означает, что пар превратился в воду, т.е. сконденсировался, а это может происходить при понижении температуры. Следовательно, температура воздуха в банке понизилась.

Причина этого следующая. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия — внутренняя энергия воздуха, находящегося в банке.

3. Внутренней энергией тела называют сумму кинетической энергии движения его молекул и потенциальной энергии их взаимодействия.

Кинетической энергией ​( (E_к) )​ молекулы обладают, так как они находятся в движении, а потенциальной энергией ( (E_п) ), поскольку они взаимодействуют.

Внутреннюю энергию обозначают буквой ​( U )​. Единицей внутренней энергии является 1 джоуль (1 Дж).

[ U=E_к+E_п ]

4. Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела. Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела.

Внутренняя энергия тела не зависит от его движения как целого и от его взаимодействия с другими телами. Так, внутренняя энергия мяча, лежащего на столе и на полу, одинакова, так же как и мяча, неподвижного и катящегося по полу (если, конечно, пренебречь сопротивлением его движению).

Читайте также:  Симптомы ангины у взрослого без температуры как лечить

Об изменении внутренней энергии можно судить по значению совершённой работы. Кроме того, поскольку внутренняя энергия тела зависит от его температуры, то по изменению температуры тела можно судить об изменении его внутренней энергии.

5. Внутреннюю энергию можно изменить при совершении работы. Так, в описанном опыте внутренняя энергия воздуха и паров воды в банке уменьшалась при совершении ими работы по выталкиванию пробки. Температура воздуха и паров воды при этом понижалась, о чём свидетельствовало появление тумана.

Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды — повысится. В этом случае работа не совершается, однако внутренняя энергия горячей воды уменьшается, о чем и свидетельствует понижение её температуры.

Поскольку вначале температура горячей воды была выше температуры холодной воды, то и внутренняя энергия горячей воды больше. А это значит, что молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи.

Теплопередачей называется способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Внутренняя энергия газа в запаянном сосуде постоянного объёма определяется

1) хаотическим движением молекул газа
2) движением всего сосуда с газом
3) взаимодействием сосуда с газом и Земли
4) действием на сосуд с газом внешних сил

2. Внутренняя энергия тела зависит от

A) массы тела
Б) положения тела относительно поверхности Земли
B) скорости движения тела (при отсутствии трения)

Правильный ответ

1) только А
2) только Б
3) только В
4) только Б и В

3. Внутренняя энергия тела не зависит от

A) температуры тела
Б) массы тела
B) положения тела относительно поверхности Земли

Правильный ответ

1) только А
2) только Б
3) только В
4) только А и Б

4. Как изменяется внутренняя энергия тела при его нагревании?

1) увеличивается
2) уменьшается
3) у газов увеличивается, у твёрдых и жидких тел не изменяется
4) у газов не изменяется, у твёрдых и жидких тел увеличивается

5. Внутренняя энергия монеты увеличивается, если её

1) нагреть в горячей воде
2) опустить в воду такой же температуры
3) заставить двигаться с некоторой скоростью
4) поднять над поверхностью Земли

6. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится на полке, висящей на высоте 80 см относительно стола. Внутренняя энергия стакана с водой на столе равна

1) внутренней энергии воды на полке
2) больше внутренней энергии воды на полке
3) меньше внутренней энергии воды на полке
4) равна нулю

7. После того как горячую деталь опустят в холодную воду, внутренняя энергия

1) и детали, и воды будет увеличиваться
2) и детали, и воды будет уменьшаться
3) детали будет уменьшаться, а воды увеличиваться
4) детали будет увеличиваться, а воды уменьшаться

8. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится в самолете, летящем со скоростью 800 км/ч. Внутренняя энергия воды в самолёте

1) равна внутренней энергии воды в комнате
2) больше внутренней энергии воды в комнате
3) меньше внутренней энергии воды в комнате
4) равна нулю

9. После того как в чашку, стоящую на столе, налили горячую воду, внутренняя энергия

1) чашки и воды увеличилась
2) чашки и воды уменьшилась
3) чашки уменьшилась, а воды увеличилась
4) чашки увеличилась, а воды уменьшилась

10. Температуру тела можно повысить, если

А. Совершить над ним работу.
Б. Сообщить ему некоторое количество теплоты.

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

11. Свинцовый шарик охлаждают в холодильнике. Как при этом меняются внутренняя энергия шарика, его масса и плотность вещества шарика? Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Читайте также:  Сухой кашель более месяца без температуры

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) внутренняя энергия
Б) масса
B) плотность

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

12. В бутыль, плотно закрытую пробкой, закачивают насосом воздух. В какой-то момент пробка вылетает из бутыли. Что при этом происходит с объёмом воздуха, его внутренней энергией и температурой? Для каждой физической величины определите характер её изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) объём
Б) внутренняя энергия
B) температура

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

Ответы

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии

Оценка

Источник

Определение

Внутренняя энергия сосредоточена «внутри» вещества и складывается из потенциальной энергии взаимодействующих молекул (атомов) и кинетической энергии их движения:

U=∑Ek0+∑Ep0

∑Ek0 — кинетическая энергия молекул (атомов), которая зависит от скорости их движения. Она изменяется только при изменении температуры. В процессе агрегатных переходов кинетическая энергия молекул остается неизменной.

∑Ep0 — потенциальная энергия взаимодействия молекул, которая зависит от расстояния между ними. Она изменяется при изменении температуры и объема. Например, в процессе агрегатных переходов изменяется именно потенциальная энергия молекул.

Способы изменения внутренней энергии:

  • Совершение работы (за счет трения или ударов).
  • Испарение (в процессе испарения внутренняя энергия жидкости понижается).
  • Теплопередача (приведение в соприкосновение с более холодным или более нагретым телом).

Виды теплопередачи

Выделяют три вида теплопередачи: теплопроводность, конфекцию и излучение.

Теплопроводность

Определение

Теплопроводность — способность тел переносить внутреннюю энергию без переноса вещества от более нагретых участков тела к более холодным.

При теплопроводности происходит постепенное увеличение скорости движения молекул. Это возможно только благодаря межмолекулярному взаимодействию. Поэтому теплопроводность в твердых телах происходит быстрее, чем в жидкостях. В газах она осуществляется еще медленнее. Для сохранения тепла используют пористые материалы, в которых много воздуха. Воздух — это смесь газов, поэтому он плохо переводит тепло.

Важно! В вакууме теплопроводность невозможна.

Конвекция

Определение

Конвекция — это перенос внутренней энергии, сопровождающийся переносом вещества.

При конвекции теплые слои жидкости или газа поднимаются, а холодные опускаются. Конвекция осуществляется только в жидкостях и газах.

Важно! В твердых телах и в вакууме конвекция невозможна.

Излучение

Определение

Излучение — это перенос теплоты в пространстве, осуществляемый в результате распространения электромагнитных волн, энергия которых при взаимодействии с веществом переходит в тепло.

Энергию излучают все нагретые тела. Чем больше нагрето тело, тем сильнее излучение. Теплопередача за счет излучения возможна в любой среде, в том числе и в вакууме.

Темные поверхности хорошо поглощают излучение, но быстро отдают энергию при охлаждении. Зеркальные и светлые поверхности отражают часть излучения и медленно остывают.

Количество теплоты

Определение

Количество теплоты Q (Дж) — физическая величина, которая показывает, на сколько изменяется внутренняя энергия вещества в процессе теплопередачи:

Q=±U

Если внутренняя энергия вещества увеличивается, то Q > 0. Это происходит при нагревании, плавлении и кипении.

Если внутренняя энергия вещества уменьшается, Q < 0. Это происходит при охлаждении, отвердевании и конденсации.

Нагревание и охлаждение вещества

Формула теплоты при нагревании или охлаждении

При нагревании или охлаждении вещество получает (отдает) количество теплоты, определяемое по формуле:

Q=cmΔt=cm(t−t0)

∆t — изменение температуры вещества (в оС или К), t0— начальная температура вещества, t — конечная температура вещества, m — его масса (кг), c — удельная теплоемкость вещества (Дж/(кг∙К)).

Удельная теплоемкость вещества показывает, какое количество теплоты необходимо затратить, чтобы нагреть 1 кг вещества на 1 градус. Такое же количество теплоты выделится при охлаждении 1 кг этого вещества на 1 градус.

Внимание! Удельная теплоемкость вещества — табличная величина.

Количество теплоты также определяется формулой:

Q=CΔT

∆T — изменение температуры в Кельвинах, а C — теплоемкость вещества.

Теплоемкость вещества показывает, сколько теплоты поглощает тело при нагревании на 1 К. Измеряется в Дж/кг. Численно теплоемкость равна произведению массы вещества на его удельную теплоемкость:

C=cm

Пример №1. Температура медного образца массой 100 г увеличилась на 40 оС. Какое количество теплоты получил образец? Удельная теплоемкость меди равна 380 Дж/(кг∙К).

100 г = 0,1 кг

Q=cmΔt=380·0,1·40=1520 (Дж)

Сгорание топлива

Формула теплоты при сгорании топлива

При сгорании топлива выделяется количество теплоты, определяемое формулой:

Q=qm

m — масса сгоревшего топлива (кг), q — удельная теплота сгорания топлива (Дж/кг).

Удельная теплота сгорания показывает, какое количество теплоты выделяется при полном сгорании 1 кг данного вида топлива.

Внимание! Удельная теплота сгорания — табличная величина.

Пример №2. Сгорело 5 сухих березовых поленьев. Каждый весил 1 кг. Определить, количество выделенной теплоты, если удельная теплота сгорания березовых дров составляет 15 МДж/кг.

15МДж = 15∙109 Дж

Так как сгорело 5 поленьев по 1 кг, то всего сгорело 5 кг сухих березовых дров. Отсюда:

Q=qm=5·15·109=75·109 (Дж)=75 (МДж)

Алиса Никитина | ???? Скачать PDF |

Источник