Паяльник без регулировки температуры

Паяльник без регулировки температуры thumbnail

Для выполнения различных электромонтажных работ, сборки электронных схем очень часто используется такой инструмент, как электропаяльник. Простейший его вид, который можно приобрести в любом хозяйственном магазине, имеет, как правило, элементарную конструкцию.

В нее входят нагревательный элемент, жало, рукоятка, чаще деревянная, и питающий кабель или шнур. В некоторых вариантах паяльник может комплектоваться несколькими сменными жалами.

Мощность такого паяльника фиксированная, чаще всего 40 или 60 Ватт. Но удобнее пользоваться инструментом с возможностью регулировки мощности. Такие модели тоже выпускают, хотя стоят они дороже.

Для чего повышать мощность

Паяльник без регулировки температурыЧтобы выполнять паяльные работы, требуются инструменты с различными параметрами. При этом иметь несколько паяльников с разной мощностью и, соответственно, с разной температурой нагрева жала, нецелесообразно.

При монтаже компонентов на плату требуется температура жала, достаточная для прогрева выводов и плавления припоя. Увеличенные значения температуры могут привести к сгоранию отдельных элементов, отклеиванию токопроводящих дорожек от платы, повреждению изоляции проводов.

В то же время использование паяльника с меньшей мощностью, а значит и с меньшей температурой нагрева жала, позволяющей достигнуть заданного значения, принуждает увеличивать время воздействия на детали и припой.

В результате от длительного нагрева компоненты выходят из строя, а изоляция может со временем растрескиваться из-за потери механических свойств.

Вывод: при пайке, если требуется прогрев больших площадей и массивных деталей, необходимо повышать не температуру, а мощность паяльника, сократив до возможного минимума время контакта жала с выводами детали.

При этом припой должен расплавиться и обеспечить надежный контакт с деталью, которая при таком режиме не подвергнется перегреву.

Управление нагревом

Чтобы нагреть массивную деталь до нужной температуры, необходимо и такое же массивное жало паяльника, чтобы скорость нагрева была выше скорости теплоотвода детали.

Инструментом, который справится одновременно с поставленными выше задачами, является достаточно мощный паяльник с регулировкой температуры.

Паяльник без регулировки температурыТо есть максимальной мощности паяльника должно быть достаточно для разогрева крупных выводов, а температура должна регулироваться в некоторых пределах и выбираться в соответствии с условиями работ.

Тогда массивное жало будет обладать большей тепловой инерцией и нагреет деталь до необходимой степени, без риска ее перегрева.

Существует несколько способов регулировки температуры паяльника:

  • максимальный-минимальный нагрев (простейший переключатель);
  • регулировка диммером;
  • применение управляющих микросхем в рукоятке прибора;
  • внешний блок управления;
  • применение фена.

Используя паяльник с регулировкой помимо преимуществ, описанных выше, можно значительно сэкономить на потребляемой электроэнергии при больших объемах выполняемых работ, продлить срок службы прибора, благодаря меньшему времени работы его на максимальной мощности, уменьшить количество вредных веществ, выделяемых при пайке с высокой температурой.

Переключатели и диммеры

Паяльник без регулировки температурыПростейшая регулировка температуры применена в паяльниках с переключателем, допускающим всего два положения, а соответственно и два значения температуры.

При минимальном значении паяльник, установленный на подставке, просто поддерживает жало в нагретом состоянии, а при нажатии на клавишу или кнопку, жало нагревается до максимальной температуры, при которой и производится пайка.

Очевидно, что из преимуществ, описанных выше, такой паяльник обладает только возможностью экономить электроэнергию. Главная же задача регулировки – производство качественного и безопасного монтажа компонентов – остается невыполнимой.

Паяльник без регулировки температурыВторая разновидность паяльников с регулировкой – диммируемые. Их конструкция предполагает включение в разрыв питающего кабеля диммера – устройства, ограничивающего потребление электроэнергии паяльником.

При этом действительно появляется возможность регулировки температуры жала, но делается это за счет падения напряжения в диммере.

Соответственно, ни о какой экономичности такой схемы не может быть и речи. Но цена таких устройств довольно низкая и может сыграть решающую роль при выборе.

Блоки управления

Следующим видом паяльников являются уже более сложные устройства с блоком питания, в которых регулирование происходит при помощи блока из полупроводников и микросхем. Такой блок компактен и может находиться в корпусе рукоятки паяльника, что очень удобно.

Паяльник без регулировки температуры

Регулятор также может находиться на рукоятке. При достаточно скромной цене это вполне приемлемый вариант, позволяющий производить качественную пайку.

Еще одной разновидностью паяльников с регулировкой являются инструменты с внешним блоком питания. Благодаря наличию этих блоков возможна работа прибора на выпрямленном постоянном токе со стабильными значениями напряжения.

Паяльник без регулировки температурыТакой блок питания одновременно служит и стабилизатором температуры паяльника, которая останется неизменной независимо от того, насколько будет изменяться напряжение в сети. Многие радиодетали требовательны именно к такому режиму пайки.

Недостатком моделей можно посчитать громоздкость, низкую мобильность, но если принять во внимание, что качественный монтаж можно произвести только в оборудованной мастерской, а не «на коленке», как принято говорить в таких случаях, то можно закрыть на это глаза.

Наиболее точной регулировки и настройки можно добиться только при помощи паяльной станции, где в помощь обычному паяльнику предусмотрен фен, которым предварительно подогревают плату или припой.

Регулятор температуры своими руками

Паяльник без регулировки температурыПри наличии достаточных знаний, навыков и подходящих материалов, можно обычный паяльник мощностью 60 Ватт превратить в устройство, в котором будет возможна регулировка температуры жала, и будет обеспечиваться полноценный и качественный монтаж радиокомпонентов.

Чтобы осуществить это, понадобится небольшая доводка инструмента. Для этого можно использовать схемы регулировки, собранные на доступных радиодеталях отечественного производства.

Паяльник без регулировки температурыДля сборки простейшего регулятора температуры можно воспользоваться схемой с переменным резистором из серии СП-1, тиристором КУ101Г, любым диодом, рассчитанным на ток не менее 1 А.

Схему собирают прямо на корпусе переменного резистора, не изготавливая платы. Для размещения устройства можно применить корпус от любого блока питания подходящих размеров. В результате получится устройство, в котором штатный паяльник питается от сети через регулятор напряжения, находящийся в штепсельном разъеме.

Такой регулятор температуры может быть использован при работе паяльником с невысокой мощностью до 60 Ватт.

Для регулировки температуры при использовании паяльника большей мощности применяют устройство посложнее.

Паяльник без регулировки температуры

Оно также собирается на деталях и компонентах отечественного производства. Эту схему собирают на плате и помещают в подходящий по размерам корпус.

Регулировка осуществляется переменным резистором R2 в диапазоне от 50% до 100% мощности подключенного прибора. Схема выдержит нагрузку до 300 Ватт. Этого для использования бытового паяльника будет более чем достаточно.

Источник

Многим знаком недорогой паяльник с Алиэкспресс с встроенным регулятором напряжения. Димер это лучше, чем ничего, но нормальной работы с паяльником он не обеспечивает. В свое время Л. Елизаров из г. Макеевка Донецкой области опубликовал схему стабилизатора температуры для паяльника без датчика. За счет измерения изменения сопротивления нагревательного элемента. Схема много где публиковалась. Была еще одна статья в журнале Радио.

Некоторое время назад я уже применял первую схему для паяльника с керамическим нагревателем и пистолетной рукояткой. На снимке он верхний в уже переделанном виде.

Паяльник без регулировки температуры

Работа стабилизатора понравилась. Тот паяльник является основным для меня уже пожалуй с год. Но рукоять толстовата. Он тяжелее нового. Да и любопытно.

Дальше ориентируемся на измененную схему (Доработка стабилизатора жала паяльника).

Измерение сопротивления нагревателя с Али (нижний на снимке) дало результат около 450 Ом в холодном состоянии и около 1,5 килоом в хорошо прогретом. Т.е. сопротивление изменяется раза в три. Решил адаптировать схему и для него. По факту получилось по второй доработанной схеме. R1 – 820 Ом, R2 – подстроечник 200-500 Ом. R3 выведен наружу и сопротивление его 470-500 Ом. С такими номиналами мой паяльник регулирует температуру где то от 220 до 350 градусов.

Паяльник без регулировки температуры

В качестве корпуса использовал обычный разветвитель-двойник из магазина. Фото платы и корпуса далее.

Паяльник без регулировки температуры

Двойник разбирается с помощью болгарки, ножа, пассатижей, бокорезов убирается лишнее с верхней крышки. На снимке видно до какого состояния примерно.

Читайте также:  Головная боль озноб без температуры боль в животе

Паяльник без регулировки температуры

Обратите внимание на полупрозрачную пленочку. Плата стала расслаиваться и я снял верхний слой. И он прекрасно подходит в качестве страховочной прокладки между шинами двойника (которые соединяю с платой проводами методом пайки) и платой. Внутрь это все вставляется примерно так:

Паяльник без регулировки температуры

Верхняя крышка, сборка. Устройство в сборе.

Паяльник без регулировки температуры

Доработка самого паяльника несложная вовсе

Суть ее проста – изъять симистор и соединить провод паяльника с нагревателем напрямую. Лично я провод заменил (провод с вилкой пригодится), а симистор повесил за одну ногу на плате паяльника. Родной регулятор уже не используется. Крутилку использую в качестве заглушки и фиксатора платы.

Практика с этим паяльником пока не велика, но не вижу причин для отрицательного результата. Первый переделанный работает прекрасно и является моим основным. Что нужно сделать, если вы решили переделать и свой? Измерьте сопротивление нагревателя в холодном виде и после прогрева. Естественно в отключенном от сети состоянии.

  • Если они примерно совпадают с моими, смело можете повторять с моими номиналами.
  • Если нет, то вам придется подобрать величины для R1, R2, R3.

С паяльниками имеющими нихромовые нагреватели не экспериментировал, рекомендаций дать не могу.

О деталях

  • Стабилитроны на 5,6 вольта с мощностью не менее 1 Вт.
  • Мосты использовал 2 А 1000 вольт. Просто были в наличии.
  • Симистор BT134-600. Тоже просто был.

Печатная плата

Паяльник без регулировки температуры

Вот файл печатки.

Теперь главное. А зачем это все нужно, что это дает? Простой регулятор тока никак не обеспечивает стабилизацию. Если совсем мало, чтобы естественного охлаждения хватало, чтобы паяльник не перегревался, то при пайке будет явно не хватать мощности.

Если нормально при пайке, то при простое будет перегрев. Неизбежно.

Это сказывается очень сильно. Например мои китайские жала, которые шли вместе с паяльником (медные, кстати) таяли просто на глазах. Особенно жалко плоское. Топориком.

Кроме того, при перегреве и длительном простое обгорает кончик и порой его становится крайне сложно облудить. Естественно окисляется припой и превращается в серо-черную кашу. И прежде чем паять вам придется чистить кончик каждый раз. Словом сильно сокращается жизнь жала и комфортность пайки.

Доработанный таким образом паяльник приобретает черты паяльников совсем другой ценовой категории и качества. Фактически это паяльная станция.

Еще один аспект который проверил для себя. Иногда выпаиваю детали двумя паяльниками. Поскольку таких паяльников у меня теперь два, то имело смысл проверить, а не возникает ли между ними разности потенциалов, губительной для извлекаемой детали. 

Измерение вольтметром показали нули на диапазоне 20 вольт постоянки и 200 вольт переменки. Одну из сетевых вилок переворачивал. Возможно просто качественная керамика в нагревателях. Правда стоит иметь в виду, в первом переделанном паяльнике вместо ИП на стабилитронах стоит китайский маленький ИБП на 12 вольт (не нашел тогда мощных стабилитронов). Возможно причина еще в этом.

Ну и почему именно такие паяльники особенно интересны для этой переделки.

В обычном режиме он быстро перегревается. А это говорит об избыточной температуре нагревателя. И избыточной мощности. Он имеет керамический нагреватель с достаточно большим сопротивлением и сильным изменением сопротивления при нагреве, что позволяет точнее отслеживать температуру.

Следовательно, после переделки он будет очень быстро нагреваться, так как напряжение подается не после диммера, в урезанном виде, а полное напряжение сети.

По этой же причине он будет быстрее восстанавливать температуру после интенсивного отбора тепла при пайке массивных деталей.

Немного о настройке схемы

Тут все просто. Сопротивление цепочки R1, R2 и R3 определяет минимальную температуру паяльника. Чем меньше сопротивление – тем меньше нагрев. То есть выведя движок сопротивления R3 в положение наименьшего сопротивления, подбором R1, R2 выставляют желаемую минимальную температуру. Ее выбрал в районе 200-220 градусов. А вот величина сопротивления R3 будет определять максимально возможную температуру паяльника. Я выбрал ее в районе 500 Ом. И получил на максимуме около 360 вольт.

Выбирать ее слишком большой не советую. При каком-то сопротивлении регулятор практически перестает отключать нагреватель (светодиод горит, лишь изредка помаргивая). Так легко вообще загробить жала.

При нормальной работе светодиод практически непрерывно светит после включения несколько секунд. Потом появляются паузы, которые по мере прогрева они становятся все длиннее. Мой паяльник на рабочий режим выходит секунд за 20-30.

Тришин А.О.
Г. Комсомольск-на-Амуре.
Ноябрь 2018 г.

   Форум по паяльникам

Источник

Источник – Яндекс-картинки

На практике нередко возникают ситуации, когда мощности имеющегося паяльника недостаточно для пайки массивных деталей. Или же, наоборот, жало паяльника перегревается с образованием нагара, который затрудняет пайку и ведёт к перегреву миниатюрных радиодеталей, например — бескорпусных SMD-элементов.

Конечно, такой проблемы не возникнет при наличии хорошей паяльной станции. Кроме того, существует масса схем различных электронных регуляторов мощности паяльника.

Однако в единичных, «разовых» случаях часто можно обойтись и обычным паяльником, применив некоторые простые «ухищрения». Сейчас такие вещи принято называть модным и громким словом «лайфхак», но это слово режет нежный слух автора, поэтому он называет это более привычно и банально: – полезные советы…

В настоящее время нередко попадаются паяльники неизвестного происхождения, красивые снаружи и содержащие внутри сплошные загадки. Мощность такого паяльника может оказаться какой угодно, независимо от того, что указал производитель. И даже высокая цена изделия не обязательно является показателем качества и соответствия параметров заявленным. Например, не раз попадались паяльники с явно завышенной реальной мощностью, жало которых перегревалось, отчего быстро покрывалось нагаром и попросту выгорало. Да и сами такие паяльники могут работать очень недолго, в них попросту перегорает нагревательный элемент — спираль. В таких случаях снизить мощность можно очень простым способом, с помощью одного диода, включенного в разрыв сетевого провода:

Схема-рисунок автора. Ещё умею хорошо рисовать “Чёрный квадрат Малевича”, но это уже будет плагиат :-))

Диод можно взять любой, рассчитанный на работу с напряжением питания паяльника и соответствующей мощности. Например, КД226, 1N4007 и т.д. Суть метода в том, что диод пропустит только полжительные (или отрицательные, в зависимости от полярности его включения) полуволны переменного напряжения на паяльник, тем самым снизив его мощность.

Параллельно диоду можно включить любой подходящий переключатель (с фиксацией) и, таким образом, включать паяльник в режим полной, либо пониженной мощности. Этот метод понижения мощности прост, давно известен и не раз применялся на практике.

Но бывают случаи, когда наоборот, мощности паяльника не хватает для того, чтобы выпаять или припаять деталь. Например, при необходимости заменить мощный транзистор, диод или даже небольшой «электролит» на материнской плате компьютера. Из-за массивности самой детали или большой площади токоведущих дорожек платы температуры жала паяльника недостаточно для быстрого разогрева припоя. А продолжительное время прогрева места пайки может привести к перегреву самой детали и выходу её из строя, а также к отслоению токоведущих дорожек от платы.

В этом случае можно простым способом увеличить теплоёмкость жала, плотно намотав на него несколько витков медного провода сечением 1…2 мм:

Фото автора

При этом само жало должно быть как можно более коротким и для его прогрева потребуется несколько больше времени. Оно будет способно «накопить» большее количество тепловой энергии и, соответственно, больше этой энергии отдать в момент пайки.

Как видите, советы очень простые и не требуют ни особых затрат, ни времени.

Ну а в идеале, конечно, неплохо всегда иметь под рукой хорошую паяльную станцию или просто несколько паяльников разной мощности. Тогда и читать (и писать) подобные статьи не будет никакого смысла и автор помрёт от скуки :-))

  • при желании Вы можете поставить автору лайк или дизлайк. А комментарии, мне кажется, здесь вряд ли будут уместны…
Читайте также:  Как измерить температуру в квартире без градусника

Источник

Основой послужила статья в журнале Радио №10 за 2014г. Когда эта статья попалась на глаза, мне понравилась идея и простота реализации. Но сам я использую малогабаритные низковольтные паяльники.

Напрямую схему для низковольтных паяльников использовать нельзя из-за низкого сопротивления нагревателя паяльника и как следствие значительного тока измерительной цепи. Я решил переделать схему.

Получившиеся схема подходит для любого паяльника с напряжением питания до 30В. Нагреватель которого имеет положительный ТКС (горячий имеет большее сопротивление). Лучший результат даст керамический нагреватель. Например можно запустить паяльник от паяльной станции со сгоревшим термодатчиком. Но и паяльники с нагревателем из нихрома тоже работают.

Поскольку номиналы в схеме зависят от сопротивления и ТКС нагревателя то, прежде чем реализовывать надо выбрать и проверить паяльник. Измерить сопротивление нагревателя в холодном и горячем состоянии.

А также рекомендую проверить реакцию на механическую нагрузку. Один из моих паяльников оказался с подвохом. Измерьте сопротивление холодного нагревателя кратковременно включите и повторно проведите измерение. После прогрева измеряя сопротивление надавите на жало и легонько постучите имитируя работу с паяльником, следите на скачки сопротивления. Мой паяльник в итоге вел себя как будто у него не нагреватель а угольный микрофон. В итоге при попытке работы, чуть более сильное нажатие приводило к отключению из-за увеличения сопротивления нагревателя.

В итоге переделал собранную схему под паяльник ЭПСН с сопротивлением нагревателя 6 ом. Паяльник ЭПСН это худший вариант для данной схемы, низкий ТКС нагревателя и большая тепловая инертность конструкции делает термостабилизацию вялой. Но тем не менее время нагрева паяльника сократилось в 2 раза без перегрева, относительно нагрева напряжением дающим примерно такую же температуру. И при длительном лужении или пайке меньше падение температуры.

Паяльник без регулировки температуры

Рассмотрим алгоритм работы.

1. В начальный момент времени на входе 6 U1.2 напряжение близко к 0, оно сравнивается с напряжением с делителя R4,R5. На выходе U1.2 появляется напряжение. (Резистор ПОС R6 увеличивает гистерезис U1.2 для помеха защиты. )

2. С выхода U1.2 напряжение через резистор R8 открывает транзистор Q1. (Резистор R13 необходим для гарантированного закрытия Q1, если операционный усилитель не может выдать на выходе напряжение равное отрицательному напряжению питания)

3. Через нагреватель паяльника RN, диод VD3, резистор R9 и транзистор Q1 протекает измерительный ток. (мощность резистора R9 и ток транзистора Q1 выбирают исходя из величины измерительного тока, при этом падение напряжении на паяльнике стоит выбирать в районе 3 в, это компромисс между точностью измерения и мощностью рассеиваемой на R9. Если рассеиваемая мощность получается слишком большой то можно увеличить сопротивление R9,но точность стабилизации температуры снизится).

4. На входе 3 U1.1 при протекании измерительного тока появляется напряжение, зависимое от соотношения сопротивлений R9 и RN, а также падения напряжения на VD3 и Q1, которое сравнивается с напряжением с делителя R1, R2, R3.

5. Если напряжение на входе 3 усилителя U1.1 превысить напряжение на входе 2 (холодный паяльник низкое сопротивлении RN ). На выходе 1 U1.1 появится напряжение.

6. Напряжение с выхода 1 U1.1 через разряженный конденсатор С2 и диод VD1 подает на вход 6 U1.2, в итоге закрывая Q1 и отключая R9 от измерительной цепи. (Диод VD1 требуется если операционный усилитель не допускает наличия на входе отрицательного напряжения.)

7. Напряжение с выхода 1 U1.1 через резистор R12 заряжает конденсатор С3 и емкость затвора транзистора Q2. И при достижении порогового напряжения транзистор Q2 открывается включая паяльник, при этом диод VD3 закрывается отключая сопротивление нагревателя паяльника RN от измерительной цепи. (Резистор R14 необходим для гарантированного закрытия Q2, если операционный усилитель не может выдать на выходе напряжение равное отрицательному напряжению питания, а также при более высоком напряжение питания схемы на затворе транзистора напряжение не превысило 12 в.)

8. От измерительной цепи отключены резистор R9 и сопротивление нагревателя RN. Напряжение на конденсаторе С1 поддерживается резистором R7, компенсируя возможные утечки через транзистор Q1 и диод VD3. Его сопротивление должно значительно превышать сопротивление нагревателя паяльника RN, чтобы не вносить погрешности в измерении. При этом конденсатор С3 требовался, что бы RN был отключен от измерительной цепи после отключения R9, иначе схема не защелкнется в положении нагрева.

9. Напряжение с выхода 1 U1.1 заряжает конденсатор С2 через резистор R10. Когда напряжение на входе 6 U1.2 достигнет половины напряжения питания откроется транзистор Q1 и начнется новый цикл измерения. Время зарядки выбирается в зависимости от тепловой инерции паяльника т.е. его размеров, для миниатюрного паяльника 0.5с для ЭПСН 5с. Делать слишком коротким цикл не стоит поскольку начнется стабилизация только температуры нагревателя. Указанные на схеме номиналы дают длительность цикла примерно 0.5с.

10. Через открытый транзистор Q1 и резистор R9 будет разряжен конденсатор С1. После падения напряжения на входе 3 U1.1 ниже входа 2 U1.1 на выходе появится низкое напряжение.

11. Низкое напряжение с выхода 1 U1.1 через диод VD2 разрядит конденсатор С2. А также через цепочку резистор R12 конденсатор С3 закроет транзистор Q2.

12. При закрытом транзисторе Q2 диод VD3 откроется и через измерительную цепь RN, VD3, R9, Q1 потечет ток. И начнется зарядка конденсатора С1. Если паяльник нагрелся выше установленной температуры и сопротивление RN увеличилось достаточно что бы напряжение на входе 3 U1.1 не превысило напряжение с делителя R1, R2, R3 на входе 2 U1.1, то на выходе 1 U1.1 сохранится низкое напряжение. Такое состояние продлится до тех пор пока паяльник не остынет ниже установленной резистором R2 температуры, тогда повторится цикл работы начиная с первого пункта.

Выбор компонентов.

1. Операционный усилитель я использовал LM358 с ней схема может работать до напряжения 30 в. Но можно например использовать TL072 или NJM4558 и т.д.

2. Транзистор Q1. Выбор зависит от величины измерительного тока. Если ток около 100 мА, то можно использовать транзисторы в миниатюрном корпусе, например в корпусе SOT-23 2N2222 или BC-817, Для больших измерительных токов возможно придется ставить более мощные транзисторы в корпусе TO-252 или SOT-223 с максимальным током 1А и более например D882, D1802 и.т.д.

3. Резистор R9. Самая горячая деталь в схеме на нем рассеивается почти весь измерительный ток, мощность резистора можно примерно считать (U^2)/R9. Сопротивление резистора подбирается, чтобы падение напряжение во время измерения на паяльнике было около 3В.

4. Диод VD3. Желательно для уменьшения падения напряжения использовать диод Шоттки с запасом по току.

5. Транзистор Q2. Любой силовой N MOSFET. Я использовал снятый со старой материнской платы 32N03.

6. Резистор R1, R2, R3. Суммарное сопротивление резисторов может быть от единиц килоом до сотен килоом, что позволяет подобрать сопротивления R1, R3 делителя, под имеющейся в наличие переменный резистор R2. Точно рассчитать значение резисторов делителя затруднительно поскольку в измерительной цепи присутствует транзистор Q1 и диод VD3, учесть точное падение напряжения на них сложно.

Примерное соотношение сопротивлений:
Для холодного паяльника R1/(R2+R3)≈ RNхол/ R9
Для максимально нагретого R1/R2≈ RNгор/ R9

7. Так как изменение сопротивления для стабилизации температуры намного меньше ома. То для подключения паяльника должны использоваться высококачественные разъемы, а еще лучше напрямую запаять кабель паяльника к плате.

Читайте также:  Ком при отите без температуры

8. Все диоды, транзисторы и конденсаторы должны быть рассчитаны на напряжение минимум в полтора раза выше напряжения питания.

Схема из-за наличия диода VD3 в измерительной цепи имеет небольшую чувствительность к изменению температуры и напряжения питания. Уже после изготовления пришла идея как уменьшить эти эффекты. Необходимо заменить Q1 на N MOSFET с низким сопротивлением в открытом состоянии и добавить еще один диод аналогичный VD3, Дополнительно оба диода можно соединить куском алюминии для теплового контакта.

Паяльник без регулировки температуры

Исполнение.

Я выполнил схему максимально используя компоненты SMD монтажа .Резисторы и керамические конденсаторы тип размера 0805. Электролиты в корпусе В. Микросхема LM358 в корпусе SOP-8. Диод ST34 в корпусе SMC. Транзистор Q1 можно монтировать в любом из SOT-23, TO-252 или SOT-223 корпусах. Транзистор Q2 может быть в корпусах TO-252 или TO-263. Резистор R2 ВСП4-1. Резистор R9 как самую горячую деталь лучше расположить вне платы, только для паяльников с мощностью менее 10вт можно в качестве R9 распаять 3 резистора 2512.

Плата из двух стороннего текстолита. На одной стороне медь не травится и используется под землю на плате отверстия в которые запаиваются перемычки обозначены как отверстия с металлизацией, остальные отверстия со стороны сплошной меди зенкеруются сверлом большего диаметра. Для ЛУТ технологии плату надо распечатывать в зеркальном виде.

Паяльник без регулировки температуры

Немного теории. Или почему высокая частота управления не всегда хорошо.

Если спросить какая частота управления лучше. Скорее всего будет ответ чем выше тем лучше, т. е. тем точнее.

Попытаюсь объяснить как я понимаю этот вопрос.

Если брать вариант когда датчик находится на кончике жала то этот ответ правильный.

Но в нашем случае датчиком является нагреватель, хотя и во многих паяльных станциях датчик находится не в жале а рядом с нагревателем. Вот для таких случаев такой ответ будет не верен.

Начнем с точности удержания температуры.

Когда паяльник лежит на подставке и начинают сравнивать регуляторы температуры какая схема точнее держит температуру и речь зачастую идет о цифрах в один и меньше градуса. Но так ли важна точность температуры в этот момент? Ведь по сути более важно удержание температуры в момент пайки, т. е. насколько паяльник сможет удержать температуру при интенсивном отборе мощности от жала.

Представим упрощенную модель паяльника. Нагреватель к которому подводится мощность и жало от которого идет малый отбор мощности в воздух когда паяльник лежит на подставке или большой во время пайки. Оба эти элемента имеют тепловую инертность или по другому теплоемкость, как правило нагреватель имеет значительно более низкую теплоемкость. Но между нагревателем и жалом имеется тепловой контакт который имеет свое тепловое сопротивление, а это значит чтобы передать какую то мощность от нагревателя к жалу надо иметь разность температур. Тепловое сопротивление между нагревателем и жалом может иметь разную величину в зависимости от конструкции. В китайских паяльных станциях теплопередача происходит вообще через воздушный зазор и в итоге паяльник мощность пол сотни ват и по индикатору удерживающий температуру до градуса не может пропаять площадку на плате. Если датчик температуры находится в жале то можно просто увеличить температуру нагревателя. Но у нас датчик и нагреватель одно целое и при увеличении отбора мощности с жала в момент пайки температура жала будет падать поскольку из-за теплового сопротивление для передачи мощности нужно падение температуры.

Полностью решить эту проблему нельзя, но можно максимально уменьшить. И позволит это сделать более низкая теплоемкости нагревателя относительно жала. И так у нас противоречие для передачи мощности в жало надо увеличить температуру нагревателя для поддержания температуры жала, но мы не знаем температуры жала поскольку измеряем температуру у нагревателя.

Вариант управления реализованный в этой схеме позволяет разрешить эту дилемму простым способом. Хотя можно попытаться придумать и более оптимальные модели управления но сложность схемы возрастет.

И так в схеме энергия в нагреватель подается фиксированное время и оно достаточно длительное, чтобы нагреватель успевал разогрелся значительно выше температуры стабилизации. Между нагревателем и жалом появляется значительная разность температур и происходит передача тепловой мощности в жало. После выключения нагрева нагреватель и жало начинают остывать. Нагреватель остывает передавая мощность в жало, а жало остывает передавая мощность во внешнюю среду. Но за счет меньшей теплоемкости нагреватель успеет остыть до того как температура жала значительно изменится, а также и во время нагрева температура на жале не успеет сильно изменится. Повторное включение произойдет когда температура нагревателя упадет до температуры стабилизации, а так как передача мощности происходит в основном в жало, то температура нагревателя в этот момент будет слабо отличатся от температуры жала. И точность стабилизации будет тем выше чем меньше теплоемкость нагревателя и меньше тепловое сопротивление между нагревателем и жалом.

Если длительность цикла нагрева будет слишком низкой ( высокая частота управления) то на нагревателе не будут возникать моменты перегрева когда происходит эффективный перенос мощности в жало. И как следствие в момент пайки будет сильное падение температуры жала.

При слишком большой длительности нагрева теплоемкости жала не будет хватать для сглаживания бросков температуры до приемлемой величины, и вторая опасность если при высокой мощности нагревателя тепловое сопротивление между нагревателем и жалом велико, то можно получить разогрев нагревателя выше допустимых для его работы температур, что приведет к его поломке.

В итоге как мне кажется необходимо подбирать время задающие элементы C2 R10 так, что бы при измерении температуры на конце жала были видны незначительные колебания температуры. С учетом точности индикации тестера и инертности датчика заметные колебания в один или несколько градусов не приведут к колебаниям реальной температуры более десятка градусов, а такая нестабильность температуры для радиолюбительского паяльника более чем достаточная.

Вот что окончательно получилось

Так как тот паяльник на который первоначально рассчитывал оказался не пригодным, то переделал в вариант под паяльник ЭПСН с 6 ом нагревателем. Без перегрева работал от 14в я подал на схему 19в, что бы был запас на регулирование.

Доработал под вариант с установкой VD3 и заменой Q1 на MOSFET. Плату не переделывал просто установил новые детали.

Чувствительность схемы к изменению напряжения питания полностью не пропала. Такая чувствительность не будет заметна на паяльниках с керамическим жалом, а для нихрома заметно становится при изменении питающего напряжения более 10%.

Плата ЛУТ

Паяльник без регулировки температуры

Распайка не совсем по схеме платы. Вместо резисторов распаял диод VD5 разрезал дорожку к транзистору и просверлил отверстие под провод от резистора R9.

Паяльник без регулировки температуры

На переднюю панель выходят светодиод и резистор. Плата будет крепится за переменный резистор, поскольку она не большая и механических нагрузок не предполагается.

Паяльник без регулировки температуры

Окончательно схема приобрела следующий вид указываю получившиеся у меня номиналы под любой другой паяльник необходимо подбирать как писал выше. Сопротивление нагревателя паяльника конечно не точно 6 ом. Транзистор Q1 пришлось брать этот из-за корпуса силовой не стал просто менять хотя они оба могут быть одинаковые. Резистор R9 даже ПЭВ-10 чувствительно нагревается. Конденсатор С6 особо не влияет на работу и я его убрал. На плате еще распаивал керамику параллельно С1 но нормально и без неё.

П.С. Интересно если кто соберет для паяльника с керамическим нагревателем, самому пока проверить не на чем. Пишите если нужны дополнительные материалы или пояснения.

Теги:

Источник