Пластическая деформация при повышенной температуре

Пластическая деформация – эффективный инструмент формирования структуры различных материалов. На ее особенностях основаны технологии обработки давлением, придание материалам особых свойств, создание наноматериалов.
Понятие деформации
Под термином «деформация» понимаются любые изменения структуры, формы, размеров тел. Она происходит под влиянием напряжений — сил, которые действуют на единицу площади сечения заготовок или деталей. Деформация металла обусловлена:
- внешними силами;
- усадкой;
- структурными превращениями;
- внутренними физико-механическими процессами.
Примеры прилагаемых к телу нагрузок:
- сжатие – нагрузка прикладывается соосно по направлению к телу;
- растяжение – возникает при продольном от тела приложении нагрузки (соосно или параллельно плоскости, в которой находятся точки крепления тела);
- изгиб – нарушение прямолинейности главной оси тела;
- кручение – возникает при приложении к телу крутящего момента.
Механизм и виды деформирования изучаются материаловедением, физикой твердого тела, кристаллографией.
Твердые тела подвержены двум видам деформации:
- упругой;
- пластической.
В таблице приведены сравнительные характеристики этих явлений.
Критерий сравнения | Виды | |
Упругая | Пластическая (остаточная, необратимая) | |
Поведение атомов кристаллической решетки под нагрузками | · сдвигаются на промежутки меньшие, чем межатомное расстояние; · блоки кристалла поворачиваются незначительно | · перемещаются на расстояния, большие межатомных; · в структуре возникают остаточные изменения; · нет макроскопических нарушений сплошности металла |
Деформирование формы и структуры после прекращения нагрузки | устраняется полностью | не устраняется |
Вызывается действием напряжений | · нормальных; · невысоких касательных | больших касательных |
Показатели сопротивления | модуль упругости | теоретическая прочность |
Результат развития | необратимость наступает, когда напряжения достигают предела упругости; упругая переходит в пластическую. | возможность вязкого разрушения путем сдвига. |
Пластическое деформирование ведет к модификациям в структурах металлов и их сплавов, а, следовательно, к изменениям их свойств.
Механизм возникновения
Возникновение пластической деформации обусловлено процессами, имеющими кристаллографическую природу: скольжением; двойникованием; межзеренным перемещением.
Скольжение
Происходит под воздействием касательных напряжений. Проявляется в виде перемещения одной части кристалла относительно другой. Этот процесс, в пределах кристалла, называется линейной дислокацией. Когда линейная дислокация выходит из кристалла, на его поверхности возникает ступенька, равная одному периоду решетки. Увеличение напряжения ведет к перемещению новых атомных плоскостей. Образуются новые ступеньки единичных сдвигов на поверхности кристалла. Чтобы дислокация продвинулась, не требуется разрывать все атомные связи в плоскости скольжения. Межатомная связь разрывается только в краевой зоне дислокации.
Современная теория основана на положениях:
- последовательность распространения скольжения в плоскости сдвига;
- место возникновения скольжения – это область нарушения кристаллической решетки, возникающая при нагружении кристалла.
Одно из свойств металла – теоретическая прочность. Ее используют для характеристики сопротивления пластическому деформированию. Она определяется силами межатомных связей в кристаллических решетках и значительно превышает реальную. Так для железа прочность:
- 30 кг/мм — реальная;
- 1340 кг/мм — теоретическая.
Различие вызвано тем, что для движения дислокации разрушаются лишь связи между атомами, находящимися у края дислокации, а не все атомные связи. Для этого необходимы меньшие усилия.
Двойникование
Это процесс образования в кристалле областей с закономерно измененной ориентацией кристаллической структуры. Двойникованием достигается незначительная степень деформации.
Двойниковые образования возникают по одному из двух механизмов:
- являются зеркальной переориентацией структуры матрицы (материнского кристалла) в некоторой плоскости;
- путем поворота матрицы на определенный угол вокруг кристаллографической оси.
Двойникование свойственно кристаллам, имеющим решетки:
- гексагональную (магний, цинк, титан, кадмий);
- объемно-центрированную (железо, вольфрам, ванадий, молибден).
Склонность к нему повышается при увеличении скорости деформации и снижении температуры.
Двойникование в металлах с кубической гранецентрированной решеткой (алюминий, медь) — результат отжига заготовки, которая подверглась пластическому деформированию.
Межзеренное перемещение
Такое изменение структуры материала идет вод воздействием растягивающего усилия. Процесс, в первую очередь, начинается в зерне, в котором направление легкого скольжения совпадает с направлением действия нагрузки. Это зерно будет растягиваться. Соседние зерна при этом будут разворачиваться до того момента, когда в них направление легкого скольжения также совместится с направлением силы. После они начнут деформироваться.
Результат межзеренного перемещения – волокнистая структура материала. Его механические свойства неодинаковы в разных направлениях:
- пластичность выше в направлении, параллельном действию растягивающего усилия, чем в перпендикулярном направлении;
- прочность имеет высокие показатели поперек приложению усилия, в продольном направлении – показатели ниже.
Эта разница свойств называется анизотропия
Виды пластической деформации
В зависимости от температуры и скорости процесса различают такие виды пластической деформации:
- Холодную.
- Горячую.
Одно из определяющих понятий — температура рекристаллизации. Она соответствует наименьшей температуре нагрева, при которой возможно возникновение новых зерен и определяется температурой плавления металла по формуле:
tрек=0,4×tпл.
Холодная деформация. Наклеп
Холодная деформация проходит при температурах, ниже tрек. В ее результате возникает искажение кристаллической структуры материала. Все зерна растягиваются в одном направлении. Растет прочность, а свойства пластичности снижаются. Это упрочнение называется наклеп (нагортовка). Он может быть:
- полезным — наклепанный слой формируется специально, например в дробеметных машинах, накатыванием поверхностей роликами или шариками, чеканкой бойками, гидроабразивными методами;
- неумышленным (вредным) – возникает при воздействии на металл существенных давлений со стороны обрабатывающего инструмента.
Причина наклепа заключается в развороте плоскостей скольжения и усилении искажений кристаллической решетки. Упрочненный, наклепанный металл быстро вступает в химические реакции, хорошо корродирует и склонен к коррозионному растрескиванию. Деформировать его затруднительно. Но наклеп повышает свойство сопротивления усталости.
В прокатном производстве этот тип деформации применяется для обработки давлением пластичных металлов, заготовок с малым сечением. Такие методы, как штамповка и волочение, позволяют достичь требуемой чистоты поверхности и обеспечить точность размеров.
Устранить изменения в структуре, которые появляются при холодной деформации, возможно термообработкой (отжигом).
При отжиге подвижность атомов повышается. В металле из множественных центров вырастают новые зерна, которые заменяют вытянутые, деформированные. Они характеризуются одинаковыми размерами во всех направлениях. Это эффект называется рекристаллизацией.
Горячая деформация
Горячая деформация имеет такие характерные признаки:
- Температура, выше tрек.
- Материал приобретает равноосную (рекристаллизованную) структуру.
- Сопротивление материала деформированию ниже в десять раз, чем при холодной.
- Отсутствует упрочнение.
- Свойства пластичности более высокие, чем при холодной.
Благодаря этим обстоятельствам, технологии горячей деформации применяются при обработке давлением крупных заготовок, малопластичных и сложно деформируемых материалов, литых заготовок. При этом используется оборудование меньшей мощности, чем для холодной деформации.
Недостаток процесса — возникновение окалины на поверхности заготовок. Это снижает показатели качества и возможность обеспечения требуемых размеров.
Процессы, после которых структура образцов рекристаллизована частично с признаками упрочнения, называются неполной горячей деформацией. Она является причиной неоднородности структуры металла, пониженных механических и пластических характеристик. Регулированием соответствия скорости деформирующего воздействия и рекристаллизации, можно достичь условий, при которых рекристаллизация распространится во всем объеме обрабатываемой заготовки.
Рекристаллизация начинается после окончания деформирования. При значительных температурах описанные явления происходят за секунды.
Таким образом, особенности воздействия холодной деформации используются для улучшения рабочих характеристик изделий. Сочетанием горячей и холодной деформаций, режимов термообработки можно воздействовать на изменение этих свойств в требуемых пределах.
Интенсивная пластическая деформация
Получить беспористые объемные металлические наноматериалы можно технологиями интенсивной пластической деформации (ИПД). Их суть заключается в деформировании металлических заготовок:
- при относительно небольших температурах;
- при повышенном давлении;
- с высокими степенями деформации.
Это обеспечивает формирование гомогенной наноструктуры с большеугловыми границами зерен. Вопреки интенсивному воздействию, образцы не должны получать механические повреждения и разрушаться.
Технологии ИПД:
- кручение (ИПДК);
- разноканальное угловое прессование;
- всесторонняя ковка;
- мультиосевое деформирование;
- знакопеременный изгиб;
- аккумулированная прокатка.
Первые работы по созданию наноматериалов выполнены в 80х-90х годах ХХ века с использованием методов кручения и разноканального прессования. Первый метод применим для небольших образцов – получаются пластинки диаметром 10…20 мм и толщиной до 0,5 мм. Для того чтобы получить массивные наноконструкции используется второй метод, в основу которого положена деформация сдвигом.
Методы пластической деформации позволяют получать заготовки из стали, сплавов цветных металлов и других материалов (резина, керамика, пластмассы).
Они высокопроизводительные, позволяют обеспечить требуемое качество получаемых изделий, улучшить их механические свойства.
Источник
При нагреве холоднодеформированного металла до некоторых температур (для чистых металлов – выше 0,4 абсолютной температуры плавления) начинается процесс рекристаллизации. При этом в деформированной структуре возникают центры перекристаллизации и растут новые равновесные и равноосные зерна, а эффект упрочнения снимается. Такая термическая обработка называется рекристаллизационным отжигом. Чем выше температура нагрева, тем выше скорость рекристаллизации (Vрекр). При деформации нагретого металла процессы упрочнения и разупрочнения (рекристаллизации) совмещаются. При t ≥ 0,7 Т плавления рекристаллизация успевает произойти во всем объеме тела, подверженного процессу деформации на прессе или между ударами молота, упрочнение при этом полностью снимается (рис. 7.1, б). Такая деформация называется горячей. Однако и при горячей деформации создаётся волокнистая микроструктура, т. к. шлаковые включения и газовые пузыри приобретают вытянутую форму в направлении деформации. Если волокнистость правильно использовать, то усталостную прочность металла, подвергнутого горячей обработке давлением, можно повысить на 20 … 30 %, по сравнению с исходным состоянием. Этот эффект используется при накатке в горячем состоянии зубьев зубчатых колёс. Слитки, получаемые при выплавке стали, имеют крайне неоднородную структуру металла (рис. 1.5). В процессе горячей пластической деформации структура стали значительно улучшается: внутренние пустоты и рыхлоты завариваются, металл уплотняется, дендриты измельчаются, повышается пластичность. Приблизительно 80 % выплавляемой стали подвергается различным видам обработок давлением. При горячей деформации точность и качество поверхности ниже из-за температурной усадки, окалины и обезуглероживания. Но при высоких температурах сохраняется высокая пластичность и низкое сопротивление деформации. Поэтому для проведения обработки требуются машины меньшей мощности. Горячая обработка давлением применяется для крупных деталей, а также малопластичных и труднодеформируемых сплавов. Изменения микроструктуры стали при пластическом деформировании см. на рис. 7.1. При нагреве стали до ∼ 1200 °С ее сопротивление деформации снижается в ∼10 раз, а пластичность повышается в 3 … 4 раза. Однако максимальная температура нагрева ограничена возможностью резкого ухудшения свойств стали вследствие перегрева и пережога.Перегрев – это чрезмерный рост зерен при нагреве, что приводит к ухудшению механических свойств металла. Заметим, что вредное влияние перегрева можно устранить термообработкой (нормализацией).
Пережог возникает в результате внутреннего окисления по границам зерен,что приводит к нарушениям связи между ними. Пережог является неисправимым браком. Минимально допускаемая температура деформации ограничена пластичностью металла. Температурный интервал ОМД для углеродистых сталей на диаграмме железо-углерод см. на рис. 7.2, а также в табл. 4.
При неравномерном нагреве возникают термические напряжения, которые могут привести к появлению в металле термических трещин. Поэтому допускаемая скорость нагрева (и охлаждения) определяется пластичностью и температуропроводностью сплава, а также величиной сечения изделия. Перепад температур по сечению не должен быть более 100 °С, поэтому крупные слитки нагревают довольно долго, например, слиток 40 т греют порядка 24 часов. Чем выше содержание углерода и процентное содержание легирующих добавок,
тем, как правило, ниже пластичность и температуропроводность. При одинаковом химическом составе пластичность материалов, полученных литьём, существенно меньше, чем подвергнутых горячей обработке давлением. Начальный период нагрева до ≈ 750 °С наиболее ответственен, т. к. именно он определяет целостность металла. Вероятность разрушения в этом периоде наиболее высока, т. к. пластичность металла низка. Поэтому продолжительность нагревания в этом периоде занимает около 2/3 времени нагрева. При более высоких температурах нагрев можно вести с большей скоростью. Нагрев производят в камерных термических печах. Нагрев в атмосферном воздухе сопровождается обезуглероживанием и окислением поверхностного слоя металла. Для снижения степени обезуглероживания и окалинообразования желательно вести нагрев с максимально допустимой скоростью либо в защитной атмосфере или в вакууме. Максимальная скорость нагрева, обеспечиваемая печью, зависит от тепловой мощности и температуры печи, коэффициента теплопередачи излучением и расположения заготовок на поду печи. При электронагреве время нагрева уменьшается в 8 … 10 раз по сравнению с нагревом газовым пламенем, угар также уменьшается в 4 … 5 раз (до 0,5 %). Расход электроэнергии ∼ 500 квт.час/кг.
Источник
Возврат и рекристаллизация
Ранее было сказано, что при холодной деформации зерна получают разную по величине упругую деформацию, в результате чего после снятия внешних сил в металле возникают остаточные напряжения.
Если холоднодеформированное, т.е. упрочненное, тело нагреть, то происходит процесс, обратный упрочнению, — разупрочнение. Процесс разупрочнения при нагреве до температуры (0,25–0,3) Тпл называется возвратом, а при нагреве выше 0,4 Тпл — рекристаллизацией. Здесь Тпл — абсолютная температура в градусах Кельвина. При нагреве до температуры возврата амплитуда тепловых колебаний атомов и их подвижность возрастают настолько, что становится возможным переход атомов из неравновесного положения в равновесное. В результате искаженная при холодном деформировании решетка частично восстанавливается, упругие деформации отдельных зерен уменьшаются, и тем самым снимаются остаточные напряжения, возникшие при холодном деформировании.
Для прохождения процесса возврата, т.е. снятия остаточных напряжений и восстановления упруго искаженной кристаллической решетки, проводят термическую обработку, называемую низкотемпературным отжигом. Возврат приводит к некоторому уменьшению сопротивления деформированию и к увеличению пластичности материала. Если проводить деформирование при температурах возврата, то интенсивность упрочнения снижается по сравнению с холодным деформированием. Размеры и форма зерен при возврате не меняются, наблюдается текстура деформации.
Термообработка при более высоких температурах называется высокотемпературным (рекристаллизационным) отжигом и приводит к практически полному разупрочнению: зерна вытянутой формы становятся равноосными, уничтожаются текстура деформации и связанная с ней анизотропия свойств, значительно снижается сопротивление деформированию, увеличивается пластичность, полностью снимаются остаточные напряжения.
Рекристаллизация — это процесс зарождения и роста новых, т. е. неупрочненных, зерен из ориентированных вытянутых упрочненных зерен. Это связано с тем, что увеличение температуры поднимает энергетический потенциал атомов настолько, что последние получают возможность перегруппировок и интенсивного обмена местами.
Различают две стадии рекристаллизации — первичную и собирательную, которые протекают последовательно. Первичная стадия заключается в образовании зародышей и росте новых неупрочненных зерен. Зародышами новых зерен становятся имеющиеся в деформированном металле ячейки с относительно правильной решеткой. К правильным ячейкам-зародышам пристраиваются близлежащие атомы искаженной решетки, и начинает расти новое зерно с правильной решеткой за счет поглощения атомов деформированного зерна. Вследствие одинаковых возможностей роста новых зерен во всех направлениях новые зерна, образующиеся из зародышей, равноосны. Собирательная рекристаллизация заключается в объединении первичных мелких зерен в крупные зерна.
Рекристаллизация происходит во времени и с некоторой скоростью, величина которой зависит от температуры и степени деформации. Чем выше то и другое, тем выше скорость рекристаллизации.
Если проводить деформирование металла при повышенных температурах, то пластическая деформация тела сопровождается протеканием двух противоположных процессов — упрочнения и разупрочнения. Величина упрочнения определяется физической природой материала и степенью деформации, степень разупрочнения — полнотой прохождения процесса рекристаллизации, зависящей от времени и скорости рекристаллизации. Совокупность значений температуры, скорости и степени деформации называют термомеханическим режимом обработки давлением. От него зависит конечная кристаллическая структура, которую будет иметь металл после деформирования.
Размеры зерен, образующихся в результате рекристаллизации, зависят от температуры Т0, степени e и скорости vd деформации. Величина зерна зависит также от времени выдержки металла при температуре выше Трекр. На рис. 2.23 представлена объемная диаграмма рекристаллизации, показывающая размер зерна в зависимости от температуры и степени деформации.
Рисунок 2.23
Из диаграммы видно, что размер зерна уменьшается с увеличением степени деформации и увеличивается с увеличением температуры.
Особенностью процесса рекристаллизации является наличие критической степени деформации (не более 8 – 10 %), при которой наблюдается резкий рост размеров рекристаллизованных зерен, причем с повышением температуры критическая степень деформации уменьшается.
Это явление объясняется тем, что при малых степенях деформации рекристаллизация происходит в результате внутрикристаллитных процессов без нарушения оболочки зерен и межкристаллитного вещества. Вследствие этого увеличение размеров зерен затруднено.
При критических степенях деформации число центров кристаллизации остается небольшим, а межкристаллитное вещество частично разрушается, в результате чего соседние кристаллиты соприкасаются между собой и срастаются в крупные зерна. Дальнейшее повышение степени деформации приводит к увеличению числа центров кристаллизации, а следовательно, и числа рекристаллизованных зерен, что при данном объеме тела влечет за собой уменьшение размеров зерен.
С увеличением температуры прочность межкристаллитного вещества все более уменьшается, и непосредственное соприкосновение кристаллитов происходит при все более малых степенях деформации. Этим объясняется то, что с повышением температуры критическая степень деформации смещается к началу координат.
Что касается относительного роста зерна с увеличением температуры при всех степенях деформации, то это объясняется тем, что с увеличением температуры увеличиваются подвижность атомов и возможность их перехода от деформированных к новым равноосным зернам.
Рост новообразованных равноосных зерен происходит не только за счет слияния нескольких мелких зерен в одно крупное, но и за счет перехода атомов одного зерна через границу раздела к другому зерну. Причем на одном участке зерно может расти за счет другого зерна, а на другом участке поглощаться другим соседним зерном.
В результате рекристаллизационного отжига (вид термообработки поковок) металл, имеющий текстуру деформации, меняет ее на текстуру рекристаллизации, при которой равноосные рекристаллизованные зерна имеют одинаковые направления кристаллографических осей в пространстве. Это объясняется преимущественной ориентировкой кристаллографических осей у зародышей зерен.
Величина зерна в конечном продукте играет существенную роль в части механических свойств металла. Мелкозернистая структура повышает механическую прочность, усталость и ударную вязкость металла. Поэтому при пластическом деформировании и последующей термообработке необходимо выбирать такие режимы обработки, при которых образовывалась бы мелкозернистая структура.
Источник