Повышенная рабочая температура кабеля

Под термином «допустимая температура нагрева кабеля»чаще всего понимается параметр, определяющий температурный режим эксплуатации кабеля, при котором изоляция сохраняет свою долговечность и практические качества. Однако при выборе кабеля стоит использовать более широкий подход, то есть учесть также температуру нагрева жил.
В первом случае подразумевается температура окружающей среды, во втором – нагрев самого кабеля, вызванный электрическим сопротивлением токоведущих жил.
Допустимая температура нагрева изоляции кабеля
При чрезмерном нагреве или охлаждении изоляция может начать деградировать тем или иным образом. Это, в свою очередь, может привести к повреждению кабеля, а также подключённых к нему приборов и механизмов. Как следствие, допустимая температура нагрева проводов и кабелей зависит в первую очередь от материала изоляции.
«Обычные» кабели с пластмассовой (ПВХ пластикат, полиэтилен, полимеры), бумажной, резиновой изоляцией на эксплуатацию в температурных условиях от -50 до +50 градусов (здесь и далее приведены значения в градусах по шкале Цельсия). При превышении этого значения материал оболочки и изоляции начинает деградировать до расплавления. Сверхохлаждение, в свою очередь, приводит к механическому разрушению изоляции – появлению трещин, изломов и других дефектов. К примеру, допустимая температура нагрева кабеля ВВГнг в стандартном исполнении во время эксплуатации – +50°C, минимальная – -50°C, а у кабеля, в конструкции которого используется ПВХ пластикат повышенной холодостойкости может выдерживать температуру до -60°C включительно.
Если планируется эксплуатировать кабель в более экстремальных температурных условиях, целесообразно рассмотреть специализированные модели с изоляцией из иных материалов – фторопласт, силикон и других. Кроме того, при эксплуатации в экстремально холодных условиях подойдут холодостойкие исполнения.
Допустимая температура нагрева изоляции жил кабеля
Допустимая температура нагрева жил кабеля также зависит от материала изоляции, а в некоторых случаях – от рабочего напряжения. Длительно допустимая температура нагрева изоляции жил кабелей в зависимости от типа изоляции составляет:
• бумажная:
◦ до 3 кВ включительно – 80°C;
◦ 6 кВ – 65°C;
◦ 10 кВ – 60°C;
◦ 20-35 кВ – 50°C.
• бумажная обеднённо-пропитанная:
◦ 1 кВ – 80°C;
◦ 6 кВ –75°C.
• резиновая – 65°C;
• сшитый полиэтилен (СПЭ) и этиленпропиленовая резина (ЭПР) – 90°C;
• ПВХ пластикат и полимерная композиция – 70°C;
• маслонаполненные – 70-80°C в зависимости от типа прокладки.
Для всех типов изоляции допустимо кратковременное повышение температуры в аварийном или пусковом режиме (перегрузки). Допустимые значения температур в зависимости от типа изоляции составляют:
• бумажная обеднённо-пропитанная – 95°C, но не более 10% от эксплуатационного времени;
• резиновая – 110°C , но только при пусковом режиме;
• ПВХ изоляция и полимерная композиция – +80°C в режиме перегрузки;
• СПЭ и ЭПР – +130°C в режиме перегрузки (в аварийном режиме);
• маслонаполненные – 80°C, при этом продолжительность непрерывной работы в аварийном режиме должна быть не более 100 часов. Максимальный период работы в аварийном режиме – не выше 500 часов в год. Интервал между перегрузками не должен быть менее 10 суток.
Эксплуатации кабеля с бумажной изоляцией при напряжении 20 или 35 кВт в аварийном режиме не допускается. Эксплуатация кабеля с бумажной изоляцией при напряжении до 10 кВ включительно в аварийном режиме разрешается в течение не более 5 суток с учётом коэффициентов допустимой перегрузки.
Источник
Под термином «допустимая температура нагрева кабеля»чаще всего понимается параметр, определяющий температурный режим эксплуатации кабеля, при котором изоляция сохраняет свою долговечность и практические качества. Однако при выборе кабеля стоит использовать более широкий подход, то есть учесть также температуру нагрева жил.
В первом случае подразумевается температура окружающей среды, во втором – нагрев самого кабеля, вызванный электрическим сопротивлением токоведущих жил.
Допустимая температура нагрева кабеля
Допустимая температура нагрева изоляции кабеля
При чрезмерном нагреве или охлаждении изоляция может начать деградировать тем или иным образом. Это, в свою очередь, может привести к повреждению кабеля, а также подключённых к нему приборов и механизмов. Как следствие, допустимая температура нагрева проводов и кабелей зависит в первую очередь от материала изоляции.
«Обычные» кабели с пластмассовой (ПВХ пластикат, полиэтилен, полимеры), бумажной, резиновой изоляцией на эксплуатацию в температурных условиях от -50 до +50 градусов (здесь и далее приведены значения в градусах по шкале Цельсия). При превышении этого значения материал оболочки и изоляции начинает деградировать до расплавления. Сверхохлаждение, в свою очередь, приводит к механическому разрушению изоляции – появлению трещин, изломов и других дефектов. К примеру, допустимая температура нагрева кабеля ВВГнг в стандартном исполнении во время эксплуатации – +50°C, минимальная – -50°C, а у кабеля, в конструкции которого используется ПВХ пластикат повышенной холодостойкости может выдерживать температуру до -60°C включительно.
Если планируется эксплуатировать кабель в более экстремальных температурных условиях, целесообразно рассмотреть специализированные модели с изоляцией из иных материалов – фторопласт, силикон и других. Кроме того, при эксплуатации в экстремально холодных условиях подойдут холодостойкие исполнения.
Допустимая температура нагрева изоляции жил кабеля
Допустимая температура нагрева жил кабеля также зависит от материала изоляции, а в некоторых случаях – от рабочего напряжения. Длительно допустимая температура нагрева изоляции жил кабелей в зависимости от типа изоляции составляет:
• бумажная:
◦ до 3 кВ включительно – 80°C;
◦ 6 кВ – 65°C;
◦ 10 кВ – 60°C;
◦ 20-35 кВ – 50°C.
• бумажная обеднённо-пропитанная:
◦ 1 кВ – 80°C;
◦ 6 кВ –75°C.
• резиновая – 65°C;
• сшитый полиэтилен (СПЭ) и этиленпропиленовая резина (ЭПР) – 90°C;
• ПВХ пластикат и полимерная композиция – 70°C;
• маслонаполненные – 70-80°C в зависимости от типа прокладки.
Для всех типов изоляции допустимо кратковременное повышение температуры в аварийном или пусковом режиме (перегрузки). Допустимые значения температур в зависимости от типа изоляции составляют:
• бумажная обеднённо-пропитанная – 95°C, но не более 10% от эксплуатационного времени;
• резиновая – 110°C , но только при пусковом режиме;
• ПВХ изоляция и полимерная композиция – +80°C в режиме перегрузки;
• СПЭ и ЭПР – +130°C в режиме перегрузки (в аварийном режиме);
• маслонаполненные – 80°C, при этом продолжительность непрерывной работы в аварийном режиме должна быть не более 100 часов. Максимальный период работы в аварийном режиме – не выше 500 часов в год. Интервал между перегрузками не должен быть менее 10 суток.
Эксплуатации кабеля с бумажной изоляцией при напряжении 20 или 35 кВт в аварийном режиме не допускается. Эксплуатация кабеля с бумажной изоляцией при напряжении до 10 кВ включительно в аварийном режиме разрешается в течение не более 5 суток с учётом коэффициентов допустимой перегрузки.
Оригинал статьи размещен на нашем сайте cable.ru
Если этот материал был для Вас полезным, ставьте “лайк” и поделитесь статьей в социальных сетях!
Также рекомендуем статью о сопротивлении обмотки электродвигателя.
А для того, чтобы не пропустить выход новых статей, подписывайтесь на наш канал: Кабель.РФ: всё об электрике.
Источник
В условиях повышенных термических нагрузок обычные кабели использовать нельзя. Поэтому для создания мощных сетей в районах с умеренным климатом применяется специальная термостойкая продукция. В частности, речь идет о такой ее разновидности, как термостойкий провод. Наиболее распространенный тип проводов имеет маркировку РКГМ.
Расшифровка аббревиатуры
Маркировка провода содержит пять букв, однако вначале следует сказать об отсутствующей букве А, что указывает на медные жилы провода. Присутствующие в маркировке буквы трактуются следующим образом:
- P — резиновый изоляционный материал.
- К — изоляция сделана из кремнийорганического материала (силикона).
- Г — гибкий провод небронированного типа.
- М — стекловолоконная внешняя оплетка. Материал пропитывается жароустойчивым силиконовым лаком или эмалью.
Конструктивные особенности провода можно рассмотреть на картинке, расположенной ниже.
Кабель РКГМ
Обратите внимание! Правильнее называть РКГМ проводом, а не кабелем.
к содержанию ↑
Базовые характеристики
Провод РКГМ отличается следующими характеристиками:
- Номинальное переменное напряжение — до 660 В.
- Сечение многопроволочной жилы — от 0,75 до 120 квадратных миллиметров.
- Класс гибкости — от 4 и больше.
- Наименьший радиус изгиба при установочных работах — двойной
- Диапазон рабочих температур — от минус 60 до плюс 180 градусов по Цельсию. Температура прокладки не должна быть меньше 15 градусов мороза.
- Гарантийный срок эксплуатации — 8 лет.
- Устойчив к воспламенению.
В таблице ниже представлена номенклатура проводов РКГМ по сечениям, массе и диаметру.
Сечение, кв.мм | Масса провода, кг/км | Наружный диаметр, мм |
---|---|---|
0,75 | 18,4 | 3,5 |
1 | 21 | 3,6 |
1,5 | 27 | 3,9 |
2,5 | 41,7 | 4,6 |
4 | 58,9 | 5,4 |
6 | 86,1 | 6,3 |
10 | 128 | 7,6 |
16 | 199 | 9,2 |
25 | 301 | 10,9 |
35 | 403 | 12,2 |
50 | 549 | 14,1 |
70 | 755 | 16,5 |
95 | 1018 | 18,6 |
120 | 1252,8 | 21,3 |
к содержанию ↑
Сферы применения
Благодаря высокой термической стойкости, провод РКГМ применяется в таких сферах, как:
- прокладка электрических цепей во внутренних частях зданий, а также в уличных условиях при умеренном климате;
- производство обмоток для высокомощных электрических установок и машин переменного тока;
- использование в качестве комплектующего в химическом оборудовании (резиновый изолятор устойчив к воздействию агрессивных химических сред);
- установка во влажных местах, где высока вероятность развития грибка и плесени.
Широко используется РКГМ и как термостойкий кабель для сауны. Сечение в 2,5 квадратных миллиметра применяется для розеток. Этой площади сечения вполне достаточно, если не планируется использование крупных электрических приборов. Сечение в 1,5 квадратных миллиметра используется для установки осветительных приборов в парилке.
Обратите внимание! Выпускаются провода РКГМ, расцветка которых специально рассчитана на деревянные конструкции. Такая проводка благодаря цвету сливается со стенами. При этом в продаже имеются и провода классического белого цвета.
РКГМ можно применять для организации проводки не только в бане или сауне, но и в ванной комнате, а также в подвальном помещении. Таким образом, одно из ключевых качества РКГМ — влагоустойчивость. При этом данный проводник не слишком хорошо переносит низкие температуры, его оболочка начинает разрушаться при минусовых значениях.
к содержанию ↑
Компании-производители
Ниже перечислены основные российские производители термостойкого провода РКГМ:
- «Камкабель»;
- «Уралкабель»;
- «Рыбинсккабель»;
- «Новомосковский кабельный завод».
РКГМ производится в соответствие с техническими характеристиками, прописанными в ТУ16.К80-09-90. При желании заменить РКГМ на другой провод необходимо смотреть в данные ТУ, подбирая продукт с похожими техническими данными.
к содержанию ↑
Другие виды кабеля
При желании возможно выбрать другой вид кабеля из 6 описанных ниже.
ПВКВ
Еще один вариант термостойкого силиконового кабеля — ПВКВ. Аббревиатура означает: П — провод, В — вывод электромашины, КВ — изолятор из двух слоев кремнийорганического материала. ПВКВ используется в производстве обмоток класса «H» для машин, которые эксплуатируются без отрицательного воздействия масел или других агрессивных химических материалов. ПВКВ сохраняет эксплуатационные свойства при температурах до 180 градусов выше нуля. ПВКВ отличается высокой влагоустойчивостью.
Техническая особенность ПВКВ — повышенная гибкость токоведущей жилы, которая способна выдерживать до двух десятков изгибов. Провод устойчив как к высокому, так и к низкому атмосферному давлению, а также к его резким перепадам. ПВКВ хорошо противостоит вибрационным и другим механическим воздействиям (например, ударам). Изоляция позволяет применять его в пожароопасных местах, поскольку данный проводник не горюч. Так как ПВКВ устойчив к грибку и плесени, его можно использовать во влажных помещениях, в том числе в банях и подвалах.
к содержанию ↑
ПРКА
Расшифровывается аббревиатура следующим образом: П — провод из меди, РК — кремнийорганический материал изоляции, пропитанный противогнилостной смазкой, А — высокая твердость. ПРКА используется при установке электрических обогревательных установок, электродвигателей, а также при прокладке проводки в сушильном оборудовании, банях и саунах.
Изолятор не имеет в своем составе галогенной составляющей, не горит, устойчив к грибку и плесени, не разрушается под воздействием ультрафиолетового излучения, практические не выделяет газов. Изоляционный слой способен сохранять эксплуатационные качества при температурах до 180 градусов выше нуля и уровне влажности до 98 %. Проводник отличается высокой стойкостью ко множественным изгибам.
к содержанию ↑
ПАЛ
Буквы в маркировке несут следующую информацию: П — провод, А — асбест в качестве материала, Л — лакированная поверхность. Токопроводящие жилы покрыты одним слоем асбеста, пропитанного кремнийорганическим лаком.
Провод отличается особенно высокой устойчивостью к повышенным температурам, выдерживая воздействие 300-градусного тепла в течение 3 тысяч часов подряд. Однако следует иметь в виду, что уже при 250 градусах выше нуля изоляционный материал начинает выделять токсины, опасные для здоровья человека. Тем не менее, для электропроводки в бане или сауне ПАЛ — отличный выбор, так как материал сохраняет полную экологическую безопасность в пределах от минус 50 до плюс 200 градусов по Цельсию.
ПАЛ отличается высокой механической прочностью, устойчивостью к истиранию, воздействию агрессивных химических сред (бензина, лакокрасочных материалов, толуола и т.д.). Провод устойчив к изгибам и может эксплуатироваться даже после двух десятков циклов изгиба.
к содержанию ↑
ПМТК
Расшифровка аббревиатуры: П — провод, М — монтажный, Т — термически устойчивый, К — кремнийорганический материал изоляционного слоя. Используется при установке оборудования специального назначения. К примеру, ПМТК часто применяется в обогревателях, электрических плитах и печах. Нередко можно встретить ПМТК в банях и саунах.
ПМТК содержит многопроволочную токоведущую жилу из меди. Такой проводник отличается стойкостью к ультрафиолетовому излучению, может эксплуатироваться в помещениях со 100 % уровнем влажности при температурах от минус 60 до плюс 200 градусов по Цельсию. Изоляционный материал ПМТК не горюч.
к содержанию ↑
ПНБС
Этот тип термостойких проводов используется только для неподвижной прокладки и сохраняет эксплуатационные характеристики при температурах до 150 градусов выше нуля. Применяется в банях, саунах, электрических печах и обогревателях.
Провод содержит токоведущие жилы из меди, которые изолируются кремнийорганической резиной. Кабельная оболочка изготавливается из фторсилоксановой резины. В отличие от стандартных проводов, ПНБС можно присоединять непосредственно к электронагревательным приборам.
к содержанию ↑
ПРКС
Основное применение провода в изоляционном слое из кремнийорганической резины — влажные жаркие помещения, к каковым относятся бани и сауны. Кабельная оболочка также производится из кремнийорганического материала. ПРКС отличается высокой гибкостью, устойчивостью к механическим воздействиям и агрессивным химическим средам. ПРКС способен выносить температуру до 250 градусов выше нуля, при этом не выделяя каких-либо токсинов. Благодаря многожильному содержимому, по одному кабелю можно передавать до 30 кВт электроэнергии.
Источник
Электромонтажные работы отличаются высокими рисками. Именно поэтому необходимо знать и учитывать все важные факторы, влияющие на безопасность. В их число входит сильный нагрев проводов при эксплуатации. Данная особенность присуща всем проводам и кабелям. Кроме того, от нее зависит определение правил монтажа электропроводки и дальнейшее подключение потребителей энергии к сети. Нагрев кабеля также влияет на выбор определенной марки кабельно-проводниковой продукции и на предельную величину подключаемой нагрузки. Для того, чтобы узнать степень нагрева проводов, необходимо разобраться в причине данного явления.
Главная причина нагрева кабельно-проводниковой продукции – природа электрического тока. Ведь движение заряженных электронов по проводнику осуществляется под действием электрического поля. Кроме того, передвигаясь, электронам необходимо преодолеть кристаллическую решетку металлов, отличающуюся очень прочными молекулярными соединениями. Именно поэтому и выделяется довольно большое количество тепла, ведь происходит преобразование электрической энергии в тепловую.
Преобразование электроэнергии в тепло – явление двустороннее, то есть, с одной стороны, данный эффект нежелателен, а с другой, очень полезен.
Положительная сторона заключается в возможности применения электрической энергии для нагрева в абсолютно любом оборудовании (от простого бытового чайника до промышленных печей). По такому же принципу происходит работа любой светотехники.
Главный минус данного явления заключается в повышенном уровне опасности, поскольку сильный нагрев нередко приводит к серьезным последствиям. Помимо этого, сильное повышение температуры обмоток трансформаторов, электрических двигателей и иной техники приводит к снижению эффективности использования. В случае превышения максимального показателя нагрева происходит сбой в функционировании оборудования и в дальнейшем его выход из строя.
Самые опасные ситуации возникают тогда, когда сильно превышается температура тех кабелей и проводов, что применяются для подключения к электросети различных потребителей (проводка в жилом помещении, кабельно-проводниковая продукция для присоединения к сети производственной техники). Значительное превышение температуры нагрева изолированного кабеля чревато возгоранием изоляционного материала либо его оплавлением, которое в дальнейшем станет причиной коротких замыканий. В подобных ситуациях вероятность воспламенения напрямую зависит от применяемых защитных устройств.
Следовательно, явление нагревания кабельно-проводниковой продукции является одним из основных факторов возникновения пожаров. То есть, короткие замыкания – это главная причина львиной доли всех случающихся в жилых и административных зданиях воспламенений.
Стоит отметить, что нагревание в течение долгого времени изменяет механические свойства металла. Именно поэтому случаются такие ситуации, например, как обрыв проводов ЛЭП, что приводит и к большим финансовым потерям, и к возникновению серьезной опасности для жизни человека.
При эксплуатации той или иной кабельно-проводниковой продукции стоит помнить о предельно допустимой температуре нагрева, соответствующей конкретной марке. Данный температурный показатель напрямую связан со свойствами материала, из которого изготавливается изоляция. Например, провод с резиновой изоляцией не должен нагреваться выше 50-65С, с изоляцией из бумаги – максимум 80С, а с изоляцией из высокотехнологичных новейших полимеров температура нагрева достигает 100С. Точные свойства каждого кабеля или провода указываются непосредственно компанией-производителем.
Избежать перегрева и дальнейшего воспламенения поможет только правильный выбор кабеля для конкретной ситуации с учетом всех ее особенностей и нюансов. Для осуществления правильного выбора важно учитывать все факторы, которые влияют на степень нагрева того или иного кабеля. В этом помогут простые формулы, известные всем еще со школьных уроков физики:
Q= I2Rt – главная формула, описывающая процесс преобразования электроэнергии в тепло (закон Джоуля-Ленца), где Q – количество тепла, которое выделяется в процессе прохождения тока по проводнику, I – сила тока, R – сопротивление проводника, t – время, за которое электрический ток идет по проводнику.
Исходя из формулы, видно, что нагрев провода увеличивается одновременно с возрастанием нагрузки и показателя сопротивления. Стоит отметить, что количество выделяемой теплоты прямо пропорционально времени прохождения электрического тока. А скорость нагрева напрямую зависима от действующей электрической мощности. Последняя, в свою очередь, определяется произведением напряжения и силы тока, т.е. P=UI. Таким образом, мощность подключенных к кабелю потребителей напрямую влияет на силу и интенсивность его нагрева.
Данные формулы, а именно Q= I2Rt иP=UI, помогают узнать точные параметры, которые возможно изменять, управляя величиной и скоростью нагрева проводов.
Необходимо знать, что величина силы тока зависима от номинального показателя мощности подсоединенных проводников в совокупности. Данное значение служит основой при важных расчетах. Главным изменяющимся параметром является сопротивление, величина которого определяется свойствами металла проводника и сечением кабеля. Следовательно, сечение должно определяться на основе мощности. Именно это способно уменьшить электрическое сопротивление кабелей и, следовательно, снизить температуру нагрева до допустимой.
Выбирая сечение кабельно-проводниковой продукции необходимо помнить не только о безопасности работы электрической сети, а также об экономии. Таким образом, кабели и провода с наибольшим сечением требуют больших неоправданных расходов. Но в ситуации возможного подключения к сети дополнительных приборов в будущем желательно, чтобы кабель был с наибольшим сечением.
Для правильного определения необходимого сечения нужно рассчитать максимальный показатель потребляемого тока следующим путем: нужно разделить общую номинальную мощность всех потребителей на показатель напряжения.
Торговая сеть “Планета Электрика” обладает очень широким ассортиментом кабельно-проводниковой продукции, с которым Вы можете более подробно ознакомиться на нашем сайте.
Источник