При какой температуре разрушаются белки человека

При какой температуре разрушаются белки человека thumbnail

При превышении определённой температуры клетка приходит в негодность и умирает. Одно из простейших объяснений такой непереносимости жары состоит в том, что необходимые для жизни белки – те, что извлекают энергию из еды или солнечного света, обороняются от вторжений, уничтожают отходы и т.п. – часто обладают удивительно точной формой. Начинаясь как длинные нити, они затем скручиваются в виде спиралей, «заколок для волос» и других форм, диктуемых последовательностью их составных частей. И эти формы играют огромную роль в их деятельности. Но когда температура начинает расти, связи, удерживающие белковые структуры, нарушаются: сначала самые слабые, а затем и сильные. Логично, что распространяющаяся потеря белковой структуры должна быть летальной, но до последнего времени детали того, как именно это убивает перегретые клетки, были неясны.

Теперь же биофизики из Швейцарской высшей технической школы Цюриха изучили поведение каждого белка в клетках четырёх различных организмов при повышении температуры. Это исследование и богатый набор собранных данных, опубликованный в журнале Science, показали, что при температуре, достаточной для смерти клетки – человеческой, или же клетки кишечной палочки Escherichia coli – разрушаются лишь несколько ключевых белков. Более того, обилие белков в клетках оказалось неожиданным образом связанным с их стабильностью. Исследования позволили учёным бегло ознакомиться с фундаментальными правилами, по которым выстроена работа белков и их упорядочивание, и последствия которых, как стало понятно, простираются гораздо дальше простой смерти от жары.

Паола Пикотти, биофизик, руководивший работой, объяснила, что эксперименты отталкивались от старых и нерешённых вопросов: почему некоторые клетки выживают при высоких температурах, а другие – умирают? Бактерия Thermus thermophilus счастливо живёт в горячих источниках и в домашних нагревателях [при оптимальной температуре в 65 °C – прим. перев.], тогда как клетки E. coli чахнут при температурах выше 40 °C. Убедительные доказательства говорят о том, что дело тут в разной стабильности белков этих организмов. Но следить за белком, находящимся в живой клетке, что было бы идеальным методом изучения, очень неудобно. Изолирование белка в пробирке не даёт всех ответов, поскольку внутри организма белки сбиваются вместе и влияют на химию друг друга, или же поддерживают друг друга в необходимой форме. Чтобы понять, что именно и почему разваливается, необходимо наблюдать за белками в то время, когда они всё ещё влияют друг на друга.

Как тепло уничтожает белки

1) Первичная структура белков – это длинные цепочки аминокислот, объединённые в заданные генами последовательности.
2) Вторичная структура – это аминокислота, которая также свёртывается в конфигурации, удерживаемые слабыми межмолекулярными связями.
3) Третичная структура – слабые связи, стабилизирующие расположение прямых и скрученных участков трёхмерной структуры белка. Их расположение позволяет белку соединяться с нужными молекулами.

Тепловая смерть. Слабые связи теряют способность удерживать третичную и вторичную структуры, и белок денатурирует, то есть разворачивается. Но не все белки разворачиваются при одной температуре – окружение белка в клетке может придавать ему дополнительную стабилизацию.

Чтобы решить поставленную задачу, команда разработала автоматизированную процедуру наблюдения. Они разрезали клетки и нагревали их содержимое поэтапно, выпуская на каждом этапе ферменты, разделявшие белки. Эти ферменты особенно хорошо разрезают развернувшиеся белки, поэтому исследователи на основе остатков разрезанных белков могли судить о том, какие белки развалились при заданной температуре. Таким образом им удалось построить денатурационные кривые для каждого из тысяч изученных белков. Дуги кривых идут от нетронутой структуры белка при комфортабельной для него температуре до полностью развёрнутого состояния при высокой температуре. Для поиска различий между кривыми разных видов живых существ, были проведены эксперименты над клетками людей, E. coli, T. thermophilus и дрожжей. «Исследование было прекрасным», – сказал Алан Драммонд [Allan Drummond], биолог из Чикагского университета, имея в виду как масштаб, так и точность процесса.

Во время наблюдений было ясно видно, что белки всех живых существ не разворачиваются все сразу при повышении температуры. «Мы увидели, что лишь небольшое подмножество белков разрушилось на самых ранних стадиях, – сказала Пикотти, – и это были ключевые белки». На диаграмме с переплетениями межбелковых связей самые хрупкие белки из этого небольшого подмножества часто обладали большим количеством связей, что означает, что они влияют на множество процессов, происходящих в клетках. «Без этих белков клетки не могут работать, – сказала Пикотти. – Когда они пропадают, вся сеть разрушается». И вместе с ней, очевидно, останавливается и жизнь клетки.

Этот парадокс – самые важные белки оказываются самыми хрупкими – может быть отражением того, как эволюция создала их для выполнения соответствующих задач. Если у белка есть множество ролей, его нестабильность и склонность к разворачиванию и повторному сворачиванию может стать преимуществом, поскольку она может позволить ему принимать разные формы, подходящие к разным задачам. «Многие из этих ключевых белков обладают большой гибкостью, что и делает их менее стабильными», но при этом наделяет их способностью связываться с различными целевыми молекулами в клетке, пояснила Пикотти. «Скорее всего, именно так они справляются со своими функциями. Это некий компромисс».

Тщательнее изучив E. coli, для которой собранные данные получились наиболее качественными, исследователи обнаружили и связь между обилием белка – количеством его копий в клетке – и его стабильностью. Чем больше копий белка делает клетка, тем больше температура требуется для его уничтожения. При этом оказывается, что большое количество копий не коррелирует с критичностью белка для выживания. Некоторые ключевые белки встречаются очень редко. Эта связь между обилием и надёжностью подтверждает идею, выдвинутую Драммонд ещё лет десять назад – у клеточной системы, изготавливающей белки, есть тенденция к тому, чтобы периодически допускать ошибки. Ошибка обычно дестабилизирует белок. Если этот белок оказывается распространённым, и такой белок в клетке появляется сотню или тысячу раз в день, тогда неправильно свернувшиеся копии, произведённые в больших количествах, могут засорить клетку. Таким образом организму выгодно было бы эволюционировать так, чтобы наиболее распространённые белки были бы и наиболее стабильными, что подтверждают полученные командой Пикотти данные.

Читайте также:  Человек с самой низкой температурой тела

Чтобы понять, какие качества белка делают его стабильным, исследователи сравнили данные E. coli и T. Thermophilus. Белки E. coli начали разваливаться при 40 °C, и практически полностью деградировали при 70 °C. Но при этой температуре белки T. thermophilus только начинали испытывать дискомфорт – некоторые из них держали форму и при 90 °C. Команда обнаружила, что у T. thermophilus белки обычно были короче, и некоторые типы форм и компонентов белка чаще встречались в самых стабильных из них.

Пример кривой из эксперимента. По вертикали – процент развернувшихся белков, по горизонтали – температура. Вертикальная черта – температура, при которой клетки начинают умирать. Для этого нужно развернуться всего нескольким ключевым белкам.

Открытия могут помочь исследователям разработать белки, чья стабильность подстроена под их задачи. Во многих промышленных процессах, где используются бактерии, повышение температуры повышает и отдачу – но довольно скоро бактерии начинают умирать от жары. Было бы интересно узнать, сможем ли мы стабилизировать бактерии, сделав ключевые белки более устойчивыми к температуре – сказала Пикотти.

Обилие информации по поводу того, насколько легко разворачиваются определённые белки, сильно порадовало некоторых биологов. От стабильности белка напрямую зависит вероятность его агрегации: появления комков неразвернувшихся белков, прилипающих друг к другу. Агрегаты белков могут обернуться кошмаром для клеток и мешать выполнению главных задач. К примеру, их обвиняют в появлении некоторых серьёзных неврологических проблем, таких, как болезнь Альцгеймера, при которой бляшки развернувшихся белков засоряют мозг.

Паола Пикотти

Но это не значит, что агрегация происходит только у организмов, страдающих определёнными заболеваниями. Наоборот, исследователи поняли, что возможно, она происходит постоянно, и что у здоровых клеток есть методы, при помощи которых они справляются с нею. «Я думаю, что всё чаще это явление признаётся очень распространённым», – сказал Микель Вендрусколо [Michele Vendruscolo], биохимик из Кембриджского университета. «Большинство белков неправильно сворачиваются и агрегируют внутри клеток. Самое важное, что установила команда Пикотти, это тот отрезок времени, в котором какой-либо выбранный белок находится в развёрнутом состоянии. Это время определяет степень возможной агрегации белка». Некоторые белки почти никогда не разворачиваются и не агрегируют, другие ведут себя так в определённых условиях, а иные делают так постоянно. По словам биохимика, детальное описание белков в новой работе сильно облегчит изучение и понимание этих различий между белками. Некоторые из денатурационных кривых говорят о том, что их белки агрегируют после того, как развернулись. «У них получилось отследить оба этапа – как развёртывание, так и последующую агрегацию, – сказал Вендрусколо. – В этом вся прелесть этого исследования».

И хотя многие учёные интересуются агрегатами из-за наносимого ими ущерба, некоторые смотрят на это явление с другой точки зрения. Драммонд говорит, что становится ясным, что некоторые агрегаты – это не просто кусочки мусора, болтающиеся в клетке. Они содержат активные белки, продолжающие выполнять свои функции.

Представьте, что вы издалека видите дым, поднимающийся из какого-либо здания, говорит Драммонд. Вокруг здания вы видите некие фигуры, и вы представляете себе, что это тела, извлечённые из руин. Но если вы подойдёте ближе, вы можете обнаружить, что это живые люди, спасшиеся из горящего здания, ждущие, пока происшествие закончится. Так получается с исследованием агрегатов, говорит Драммонд: исследователи обнаруживают, что белки в агрегатах оказываются не жертвами, а выжившими. «Сейчас вообще появляется новая область науки, растущая взрывными темпами», – говорит он.

Комкование белков может оказаться не признаком повреждений, а способом для белка сохранять свои функции в сложной ситуации. Оно может, к примеру, защищать их от окружающей среды. А когда условия улучшаются, белки могут покидать агрегаты и сворачиваться заново. «Их форма меняется в зависимости от температуры таким образом, что на первый взгляд это кажется неправильным сворачиванием, – говорит Драммонд. – Но в этом есть какой-то иной смысл». В статье в журнале Cell от 2015 года он с коллегами определил 177 белков дрожжей, сохранивших свои функции уже после попадания в агрегаты. В работе, вышедшей в марте, эта команда описала, что если изменить один из белков так, чтобы он не смог агрегировать, то это приводит к серьёзным проблемам в функционировании клетки.

В общем и целом, работа утверждает, что белки – удивительно динамичные структуры. Сначала они могут показаться жёсткими машинами, работающими над зафиксированными задачами, для которых подходит одна определённая форма. Но на самом деле белки могут принимать несколько различных форм во время своей нормальной работы. И в нужное время их форма может меняться так сильно, что может показаться, будто они портятся, хотя на самом деле они наоборот укрепляются. На молекулярном уровне жизнь может представлять собой постоянные соединения и разъединения связей.

Источник

Павел Т

9 января 2019  · 2,1 K

Доктор всех псевдонаучных наук.

Это связано со свойствами белка. И называется такой процесс денатурация.
Практически любое заметное изменение внешних условий, например нагревание или существенное изменение ph, приводит к последовательному нарушению четвертичной, третичной и вторичной структур белка. Обычно денатурация вызывается повышением температуры, действием сильных кислот и… Читать далее

Читайте также:  Температура при отравлении человека пищей

Термодинамика живого. 

Биология и информация Элементы биологической термодинамики

Тринчер К.С.

Сколько мерить температуру ртутным градусником?
5 или 10 минут?

Инженер, немного пилот. Физик, химик, электронщик-любитель. Независимый звукореж…

Как и любым другим термометром – до тех пор, пока показания не перестанут расти. Это значит, что вся ртуть в кончике термометра приняла температуру подмышки (или другого места, в котором измеряется температура) и термометр показывает правильную температуру. 

ЗЫ. Научно это называется – “до установления термодинамического равновесия”.

Прочитать ещё 1 ответ

Как рассчитать температурный коэффициент реакции?

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  · vk.com/mendo_him

Что такое температурный коэффициент? ????
???? Во-первых, при повышении температуры скорость реакции возрастает. Всё логично????
????Значит, температурный коэффициент- это число, которое показывает, во сколько раз увеличилась скорость реакции, когда мы повысим температуру на 10 градусов????
????Вот такая страшная формула( но только на первый взгляд????)

γ-это и есть наш температурный коэффициент????

????Следовательно, чтобы его расчитать, нужно знать
????2 скорости (до и после повышения температуры на 10 градусов)
????2 константы (у каждой реакции они свои. Обычно их пишут в условии задачи)

Почему считается, что температуру тела человека 37-37,9 сбить нельзя?

Приведу аналогию.

В город пробрались террористы и начинают вершить свои дела. Спецслужбы не дремлют и начинают их окружать, захватывать. Слышны перестрелки. Террористы убиты.

Температура до 38,5 – это здоровая защитная реакция организма. Микробы не любят жару и поэтому становятся очень слабыми и уязвимыми. Если сбивать такую температуру, то произойдет то же самое, как если заблокировать спецслужбы городе при появлении террористов. Произойдет увеличение количества террористов, они начнут захватывать здания, убивать людей. 

Температура больше 38,5 – это защитная реакция, вышедшая из-под контроля. Это как в том же городе: количество террористов большое, ведутся перестрелки, авиаудары, взрывы бомб. Погибают мирные жители, рушатся здания, много жертв среди войск. И если не вмешаться, то всё кончится плачевно.

Прочитать ещё 6 ответов

Почему при температуре 36,9 человек чувствует себя хорошо, а при 37 мягко говоря не очень? Неужели 0,1 градуса так значительно влияют на состояние организма?

Студентка медвуза, но историк в душе. Будущий великий ученый (возможно)

Да, дело в том, что все обменные процессы в нашем организме контролируются ферментами. А ферменты могут работать в очень жестких условиях. Идеальная температура для них – 36.5-36.9. Если выше, то активность ферментов падает, а, если не ошибаюсь, при где-то 40 градусах они и вовсе перестают работать. Это называет термолабильностью.

Прочитать ещё 2 ответа

Источник

Как приготовить продукты питания, чтобы организм получил достаточное количество самого необходимого для него вещества

Белки являются основной составной частью всех тканей организма и каждой его клетки. Белки пищи расходуются, прежде всего, на восстановление износившихся белковых частиц в организме и на рост новых клеток. Их невозможно заменить даже потребляемыми в значительном количестве углеводами и жирами, в то время как последние могут в значительной своей части заменяться друг другом или белком.

О цепочках аминокислот начистоту

Главным источником белка в питании являются продукты животного происхождения; много белка содержат также некоторые растительные продукты. Так, например, в 100 граммах различных продуктов содержится следующее количество белка: в мясе (без костей) — около 20 г, в рыбе (без костей) — около 18 г, в яйцах — 12 г, в твороге — 15 г, в нежирном сыре — 28 г, в хлебе — 6 г, в крупе — 6,5 .г, в орехах — 12 г, в бобовых — 18 г, в сое — 40 г. По значению для организма белки делят на полноценные и неполноценные (в зависимости от содержания в них различных аминокислот).

Белки представляют собой сложные химические вещества, которые при пищеварении в кишечнике распадаются на более простые составные части — аминокислоты, всасывающиеся в кровь. Полноценными являются белки, содержащие все аминокислоты, из которых строятся белки тела человека и которые не образуются в человеческом организме. Обычно считают, что таковыми являются только белки животного происхождения. Тем не менее, советским ученым удалось доказать, что, например, белки картофеля и капусты также содержат все необходимые для организма аминокислоты. Признано, что в пищевом рационе не менее одной трети белка должно быть животного происхождения, при этом большое значение имеет разнообразие продуктов, сочетание которых обеспечивает организм всеми необходимыми аминокислотами. Так, например, сочетание гречневой каши с молоком создает наиболее благоприятный для организма аминокислотный состав; то же дает сочетание капусты, хлеба и яйца (знаменитые «бабушкины» пирожки с капустой и яйцом).

Помощь при болезнях

Здоровый взрослый человек в обычных условиях не накапливает в своем организме белка, а расходует весь белок пищевого рациона. Однако в период активного роста у подростков, при беременности, после тяжелых заболеваний, приводящих к истощению, при заживлении ран после операций организм задерживает часть белка, поступающего с пищей, используя его для нового построения тканей. В лечебном питании белок широко применяется при различных заболеваниях: так, при болезнях печени используется свойство творожного белка уменьшать вредное накопление жира в печени. Белки мяса способствуют укреплению сердечной мышцы.

Читайте также:  Смертельная температура воды для человека

Белок имеет большое значение в лечебном питании при туберкулезе, малокровии, при язвенной болезни желудка и двенадцатиперстной кишки, протекающей при явлениях истощения и витаминной недостаточности. Животный белок назначается при лечении тучности, так как он усиливает окислительные процессы в организме и тем самым способствует использованию организмом собственного жира.

Нет такого заболевания, при котором белки исключались бы полностью из пищевого рациона. При некоторых болезнях (воспаление почек и др.) применение белков резко ограничивается, но только на короткий срок. У здорового человека норма белка в пищевом рационе зависит от возраста и профессии, а у больного — от характера заболевания и состояния организма.

В детском питании норма белка колеблется от 2—2,5 до 4 г на 1 кг веса ребенка (в раннем возрасте дают наибольшее количество белка на 1 кг веса). Норма белка для взрослого не меньше 1 г на 1 кг веса; при средней физической нагрузке норма повышается до 1,5—1,8 г на 1 кг веса, т. е. до 100—110 г на день, а при тяжелом труде, требующей большого расхода сил, — до 2—2,5 г, т. е. до 140 г на день. В санаториях и домах отдыха средней нормой белка в суточном рационе считается 120— 125 г, высшей — 140—150 г. Нецелесообразно включать в рацион больше 150 г белка на длительный срок, так как это вредно отражается на нервной системе, печени, почках и на обмене веществ.

Готовим правильно!

Большое воздействие на количество и качество белков в пищевых продуктах оказывает кулинарная обработка. Для иллюстрации значения правильной кулинарной обработки для вкусовых и питательных качеств блюд приведем некоторые данные по обработке мяса.

При замораживании мяса соки выходят в межклеточные пространства; однако мышечные волокна мяса способны вновь впитать в себя эти соки, если процесс оттаивания производится постепенно. Быстрое оттаивание мяса снижает питательную ценность продукта и вкусовые свойства готовых блюд: мясо становится жестким, волокнистым и невкусным. Особенно негативно влияет оттаивание мороженого мяса в воде: потери белка становятся в 10 раз больше, чем при оттаивании мяса на воздухе, к тому же увеличиваются потери в полуфабрикатах, приготовляемых из мяса, размороженного в воде.

Потери сока, а вместе с ним и белка, достигают 10%, если мороженое мясо разрезают на небольшие куски. Таким образом, медленным оттаиванием мороженого мяса на воздухе при невысокой температуре можно в значительной мере сократить потери белка и сохранить вкусовые свойства пищи. Питательная ценность мяса снижается, а вкус блюд ухудшается, если мясо пропустить через мясорубку с тупыми ножами, так как при этом мясо не режется, а мнется и теряет сок.

Тепловая обработка значительно изменяет качество белков пищевых продуктов. При правильной тепловой обработке белковоподобные вещества соединительной ткани мяса и рыбы, состоящие из не усваиваемого организмом, нерастворимого в воде вещества — коллагена, — превращаются в усвояемый организмом, растворяющийся в воде клей – глютин; при этом истинный белок мышц делается более доступным для воздействия пищеварительных соков.

Процесс перехода нерастворимых веществ в глютин начинается при температуре продукта в 70°; он быстро происходит в нежных сортах мяса (вырезка, спинная часть), в мясе молодых животных, птиц. Значительно медленнее этот процесс происходит в более грубых сортах мяса (грудинка, шея и др.) и в мясе старых животных. Жарение, т. е. тепловая обработка при температуре около 130° без воды, грубых сортов мяса приводит к тому, что коллаген высыхает, прежде чем он переходит в глютин, и поэтому усвояемость белков мяса снижается. Такие сорта мяса необходимо тушить или варить. Переход коллагена в глютин совершается более интенсивно при кислой реакции, поэтому грубые сорта мяса и особенно мясо диких животных предварительно маринуют). Не растворимые в воде вещества рыбы быстро переходят в «клей», поэтому сроки тепловой обработки рыбы по сравнению с мясом должны быть значительно сокращены.

При тепловой обработке белки мяса, рыбы, яиц денатурируются (свертываются и становятся нерастворимыми в воде), и усвояемость их повышается. Значительно возрастает также усвояемость растительных белков при тепловой обработке, так, например, белки бобовых усваиваются в 2 раза больше (от 30 до 60%). Однако излишняя тепловая обработка или неправильный температурный режим приводит к вторичной денатурации белков, и в связи с этим их усвояемость снижается.

При жарении мяса и рыбы образуются ароматические вещества, которые повышают вкусовые свойства продукта и их усвоение. Однако если температура продукта при жарении значительно превышает 130°, то в корочке образуются химические соединения, имеющие «пригорелый» запах и вкус. Длительность жарения, температурный режим, размер обжариваемых кусков влияют на качество белков, их усвояемость и продолжительность пребывания пищи в желудке.

Варка мяса и рыбы в воде сопровождается переходом в отвар экстрактивных азотистых (белковых) веществ, которые при одних заболеваниях исключаются из пищевого рациона, а при других используются для возбуждения аппетита и усиления образования пищеварительных соков.

Варка на пару приводит к меньшему «выщелачиванию», нежели варка в воде; при тушении выщелачивание ниже, чем при варке (влияет количество жидкости); варка при температуре 85-90° после закипания воды уменьшает потерю мясом сока по сравнению с варкой при слабом кипении; варка при длительном, сильном кипении приводит ко вторичной денатурации белков (влияние температурного режима).

Таким образом, строгое соблюдение технологического режима приготовления пищи является важнейшим моментом, определяющим количество и качество белков в пищевых продуктах и в связи с этим вкусовые качества пищи и ее питательную ценность.
 

Источник