Процесс без изменения температуры

Процесс без изменения температуры thumbnail

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: изопроцессы — изотермический, изохорный, изобарный процессы.

На протяжении этого листка мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными. Иными словами, мы считаем, что:

• , то есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

• , то есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация — распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением, объёмом и температурой. Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева — Клапейрона).

Термодинамический процесс (или просто процесс) — это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров — давления, объёма и температуры.

Особый интерес представляют изопроцессы — термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: .
2. Изобарный процесс идёт при постоянном давлении газа: .
3. Изохорный процесс идёт при постоянном объёме газа: .

Изопроцессы описываются очень простыми законами Бойля — Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

Изотермический процесс

Пусть идеальный газ совершает изотермический процесс при температуре . В ходе процесса меняются только давление газа и его объём.

Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны , а во втором — . Эти значения связаны уравнением Менделеева-Клапейрона:

Как мы сказали с самого начала,масса и молярная масса предполагаются неизменными.

Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части:

(1)

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным:

(2)

Данное утверждение называется законом Бойля — Мариотта.

Записав закон Бойля — Мариотта в виде

(3)

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму. Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки — давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

Графики изотермического процесса

Вообще, графики термодинамических процессов принято изображать в следующих системах координат:

• -диаграмма: ось абсцисс , ось ординат ;
• -диаграмма: ось абсцисс , ось ординат ;
• -диаграмма: ось абсцисс , ось ординат .

График изотермического процесса называется изотермой.

Изотерма на -диаграмме — это график обратно пропорциональной зависимости .

Такой график является гиперболой (вспомните алгебру — график функции ). Изотерма-гипербола изображена на рис. 1.

Процесс без изменения температуры

Рис. 1. Изотерма на -диаграмме

Каждая изотерма отвечает определённому фиксированному значению температуры. Оказывается, что чем выше температура, тем выше лежит соответствующая изотерма надиаграмме.

В самом деле, рассмотрим два изотермических процесса, совершаемых одним и тем же газом (рис. 2). Первый процесс идёт при температуре , второй — при температуре .

Процесс без изменения температуры

Рис. 2. Чем выше температура, тем выше изотерма

Фиксируем некоторое значение объёма . На первой изотерме ему отвечает давление , на второй — . Но при фиксированном объёме давление тем больше, чем выше температура (молекулы начинают сильнее бить по стенкам). Значит, .

В оставшихся двух системах координат изотерма выглядит очень просто: это прямая, перпендикулярная оси (рис. 3):

Процесс без изменения температуры

Рис. 3. Изотермы на и -диаграммах

Изобарный процесс

Напомним ещё раз, что изобарный процесс — это процесс, проходящий при постоянном давлении. В ходе изобарного процесса меняются лишь объём газа и его температура.

Типичный пример изобарного процесса: газ находится под массивным поршнем, который может свободно перемещаться. Если масса поршня и поперечное сечение поршня , то давление газа всё время постоянно и равно

где — атмосферное давление.

Пусть идеальный газ совершает изобарный процесс при давлении . Снова рассмотрим два произвольных состояния газа; на этот раз значения макроскопических параметров будут равны и .

Выпишем уравнения состояния:

Поделив их друг на друга, получим:

В принципе, уже и этого могло бы быть достаточно, но мы пойдём немного дальше. Перепишем полученное соотношение так, чтобы в одной части фигурировали только параметры первого состояния, а в другой части — только параметры второго состояния (иными словами, «разнесём индексы» по разным частям):

(4)

А отсюда теперь — ввиду произвольности выбора состояний! — получаем закон Гей-Люссака:

(5)

Иными словами, при постоянном давлении газа его объём прямо пропорционален температуре:

(6)

Почему объём растёт с ростом температуры? При повышении температуры молекулы начинают бить сильнее и приподнимают поршень. При этом концентрация молекул падает, удары становятся реже, так что в итоге давление сохраняет прежнее значение.

Графики изобарного процесса

График изобарного процесса называется изобарой. На -диаграмме изобара является прямой линией (рис. 4):

Читайте также:  Фолликулярная ангина лечение у взрослых без температуры лечение при

Процесс без изменения температуры

Рис. 4. Изобара на -диаграмме

Пунктирный участок графика означает, что в случае реального газа при достаточно низких температурах модель идеального газа (а вместе с ней и закон Гей-Люссака) перестаёт работать. В самом деле, при снижении температуры частицы газа двигаются всё медленнее, и силы межмолекулярного взаимодействия оказывают всё более существенное влияние на их движение (аналогия: медленный мяч легче поймать, чем быстрый). Ну а при совсем уж низких температурах газы и вовсе превращаются в жидкости.

Разберёмся теперь, как меняется положение изобары при изменении давления. Оказывается, что чем больше давление, тем ниже идёт изобара надиаграмме.
Чтобы убедиться в этом, рассмотрим две изобары с давлениями и (рис. 5):

Процесс без изменения температуры

Рис. 5. Чем ниже изобара, тем больше давление

Зафиксируем некоторое значение температуры . Мы видим, что . Но при фиксированной температуре объём тем меньше, чем больше давление (закон Бойля — Мариотта!).

Стало быть, .

В оставшихся двух системах координат изобара является прямой линией, перпендикулярной оси (рис. 6):

Процесс без изменения температуры

Рис. 6. Изобары на и -диаграммах

Изохорный процесс

Изохорный процесс, напомним, — это процесс, проходящий при постоянном объёме. При изохорном процессе меняются только давление газа и его температура.

Изохорный процесс представить себе очень просто: это процесс, идущий в жёстком сосуде фиксированного объёма (или в цилиндре под поршнем, когда поршень закреплён).

Пусть идеальный газ совершает изохорный процесс в сосуде объёмом . Опять-таки рассмотрим два произвольных состояния газа с параметрами и . Имеем:

Делим эти уравнения друг на друга:

Как и при выводе закона Гей-Люссака, «разносим» индексы в разные части:

(7)

Ввиду произвольности выбора состояний мы приходим к закону Шарля:

(8)

Иными словами, при постоянном объёме газа его давление прямо пропорционально температуре:

(9)

Увеличение давления газа фиксированного объёма при его нагревании — вещь совершенно очевидная с физической точки зрения. Вы сами легко это объясните.

Графики изохорного процесса

График изохорного процесса называется изохорой. На -диаграмме изохора является прямой линией (рис. 7):

Процесс без изменения температуры

Рис. 7. Изохора на -диаграмме

Смысл пунктирного участка тот же: неадекватность модели идеального газа при низких температурах.

Далее, чем больше объём, тем ниже идёт изохора надиаграмме (рис. 8):

Процесс без изменения температуры

Рис. 8. Чем ниже изохора, тем больше объём

Доказательство аналогично предыдущему. Фиксируем температуру и видим, что . Но при фиксированной температуре давление тем меньше, чем больше объём (снова закон Бойля — Мариотта). Стало быть, .

В оставшихся двух системах координат изохора является прямой линией, перпендикулярной оси (рис. 9):

Процесс без изменения температуры

Рис. 9. Изохоры на и -диаграммах

Законы Бойля — Мариотта, Гей-Люссака и Шарля называются также газовыми законами.

Мы вывели газовые законы из уравнения Менделеева — Клапейрона. Но исторически всё было наоборот: газовые законы были установлены экспериментально, и намного раньше. Уравнение состояния появилось впоследствии как их обобщение.

Источник

Основными процессами в термодинамике являются:

  • изохорный, протекающий при постоянном объеме;
  • изобарный, протекающий при постоянном давлении;
  • изотермический, происходящий при постоянной температуре;
  • адиабатный, при котором теплообмен с окружающей средой отсутствует;
  • политропный, удовлетворяющий уравнению pvn= const.

Изохорный, изобарный, изотермический и адиабатный процессы являются частными случаями политропного процесса.

При исследовании термодинамических процессов определяют:

  • уравнение процесса в pv иTкоординатах;
  • связь между параметрами состояния газа;
  • изменение внутренней энергии;
  • величину внешней работы;
  • количество подведенной теплоты на осуществление процесса или количество отведенной теплоты.

Изохорный процесс

Изохорный процесс в p-v координатахИзохорный процесс в t-s координатах Изохорный процесс в i-s координатах

Изохорный процесс в p, v— , T, s— и i, s-координатах (диаграммах)

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv = RT) следует:

 p/T = R/v = const,

т. е. давление газа прямо пропорционально его абсолютной температуре:

 p2/p1 = T2/T1.

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при cv = const определяется по формуле:

q= cv(T2 —  T1). 

Т. к.l = 0, то на основании первого закона термодинамики Δu = q, а значит изменение внутренней энергии можно определить по формуле:

Δu = cv(T2 — T1).

Изменение энтропии в изохорном процессе определяется по формуле:

s2 – s1= Δs = cvln(p2/p1) = cvln(T2/T1).

Изобарный процесс

Изобарный процесс в p-v координатахИзобарный процесс в t-s координатахИзобарный процесс в i-s координатах

Изобарный процесс в p, v— , T, s— и i, s-координатах (диаграммах)

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

v/T = R/p = const

или

 v2/v1 = T2/T1,

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

l = p(v2v1). 

Т. к. pv1 = RT1 и pv2 = RT2, то

l = R(T2 – T1).

Количество теплоты при cp = const определяется по формуле:

q = cp(T2 – T1).

Изменение энтропии будет равно: 

s2 – s1= Δs = cpln(T2/T1).

Изотермический процесс

Изотермический процесс в p-v координатахИзотермический процесс в t-s координатахИзотермический процесс в i-s координатах

Изотермический процесс в p, v— , T, s— и i, s-координатах (диаграммах)

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

pv = RT = const

или

p2/p1 = v1/v2,

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

l  = RTln (v2 – v1) = RTln (p1 – p2).

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

Читайте также:  Почему при насморке болит голова без температуры

q = l.

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

s2 – s1= Δs = Rln(p1/p2) = Rln(v2/v1).

Адиабатный процесс

Адиабатный процесс в p-v координатахАдиабатный процесс в t-s координатахАдиабатный процесс в i-s координатах

Адиабатный процесс в p, v— , T, s— и i, s-координатах (диаграммах)

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

du + pdv = 0

или

Δu+ l = 0,

следовательно

Δu= —l. 

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через cад, и условие dq = 0 выразим следующим образом:

dq = cадdT = 0. 

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (cад = 0).

Известно, что

сp/cv= k

и уравнение кривой адиабатного процесса (адиабаты) в p, v-диаграмме имеет вид:

pvk = const. 

В этом выражении k носит название показателя адиабаты (так же ее называют коэффициентом Пуассона).

Значения показателя адиабаты k для некоторых газов:

kвоздуха = 1,4

kперегретого пара = 1,3

kвыхлопных газов ДВС = 1,33

kнасыщенного влажного пара = 1,135

Из предыдущих формул следует:

l= — Δu = cv(T1T2);

i1i2= cp(T1T2).

Техническая работа адиабатного процесса (lтехн) равна разности энтальпий начала и конца процесса (i1i2).

Адиабатный процесс, происходящий без внутреннего  трения в рабочем теле, называется изоэнтропийным. В T, s-диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называется реальным адиабатным процессом.

Политропный процесс

Политропным называется процесс, который описывается уравнением:

pvn= const.

Показатель политропы n может принимать любые значения в пределах от -∞ до +∞, но для данного процесса он является постоянной величиной.

Из уравнения политропного процесса и уравнения Клайперона можно получить выражение, устанавливающее связь между p, vи Tв любых двух точках на политропе:

p2/p1 = (v1/v2)n; T2/T1 = (v1/v2)n-1; T2/T1 = (p2/p1)(n-1)/n. 

Работа расширения газа в политропном процессе равна:

В случае идеального газа эту формулу можно преобразовать:

  Процесс без изменения температуры

Количество подведенной или отведенной в процессе теплоты определяется с помощью первого закона термодинамики:

q = (u2 – u1) + l.

Поскольку

Процесс без изменения температуры

представляет собой теплоемкость идеального газа в политропном процессе.

При cv, k и n = const cn = const, поэтому политропный процесс иногда определят как процесс с постоянной теплоемкостью.

Политропный процесс имеет обобщающее значение, ибо охватывает всю совокупность основных термодинамических процессов.

Графическое представление политропа в p, v координатах в зависимости от показателя политропа n.

Политропный процесс в p-v координатах

pv0 = const (n = 0) – изобара;

pv = const (n = 1) – изотерма;

p0v = const, p1/∞v = const, pv∞ = const – изохора;

pvk = const (n = k) – адиабата.

n > 0 – гиперболические кривые,

n < 0 – параболы.

По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.

Источник

Термодинамические процессы



Как упоминалось в предыдущей статье, термодинамическим процессом называют изменение состояния системы, в результате которого хотя бы один из ее параметров (температура, объем или давление) изменяет свое значение. Впрочем, если учесть, что все параметры термодинамической системы неразрывно взаимосвязаны, то изменение любого из них неизбежно влечет изменение хотя бы одного (в идеале) или нескольких (в реальности) параметров. В общем случае можно сказать, что термодинамический процесс связан с нарушением равновесия системы, и если система находится в равновесном состоянии, то никаких термодинамических процессов в ней протекать не может.

Равновесное состояние системы – понятие абстрактное, поскольку невозможно изолировать что-либо материальное от окружающего мира, поэтому в любой реальной системе неизбежно протекают разнообразные термодинамические процессы. При этом в некоторых системах могут иметь место настолько медленные, почти незаметные изменения, что связанные с ними процессы можно условно считать состоящими из последовательности равновесных состояний системы. Такие процессы называют равновесными или квазистатическими.
Еще один возможный сценарий последовательных изменений в системе, после которых она возвращается к исходному состоянию, называют круговым процессом или циклом. Понятия равновесного и кругового процесса лежат в основе многих теоретических выводов и прикладных приемов термодинамики.

Изучение термодинамического процесса заключается в определении работы, совершенной в данном процессе, изменения внутренней энергии, количества теплоты, а также в установлении связи между отдельными величинами, характеризующими состояние газа.

Из всех возможных термодинамических процессов наибольший интерес представляют изохорный, изобарный, изотермический, адиабатный и политропный процессы.

***

Изохорный процесс

Изохорным называют термодинамический процесс, протекающий при постоянном объеме. Такой процесс может совершаться при нагревании газа, помещенного в закрытый сосуд. Газ в результате подвода теплоты нагревается, и его давление возрастает.
Изменение параметров газа в изохорном процессе описывает закон Шарля: p1/T1 = p2/T2, или в общем случае:

p/T = const.

Давление газа на стенки сосуда прямо пропорционально абсолютной температуре газа.

Так как в изохорном процессе изменение объема dV равно нулю, то можно сделать вывод, что вся подведенная к газу теплота расходуется на изменение внутренней энергии газа (никакая работа не совершается).

***

Изобарный процесс

Изобарным называют термодинамический процесс, протекающий при постоянном давлении. Такой процесс можно осуществить, поместив газ в плотный цилиндр с подвижным поршнем, на который действует постоянная внешняя сила при отводе и подводе теплоты.
характерные термодинамические процессы
При изменении температуры газа поршень перемещается в ту или иную сторону; при этом объем газа изменяется в соответствии с законом Гей-Люссака:

Читайте также:  Внезапно поднялась температура 38 у взрослого без симптомов простуды

V/T = const.

Это означает, что в изобарном процессе объем занимаемый газом, прямо пропорционален температуре.
Можно сделать вывод, что изменение температуры в этом процессе неизбежно приведет к изменению внутренней энергии газа, а изменение объема связано с выполнением работы, т. е. при изобарном процессе часть тепловой энергии тратится на изменение внутренней энергии газа, а другая часть – на выполнение газом работы по преодолению действия внешних сил. При этом соотношение между затратами теплоты на увеличение внутренней энергии и на выполнение работы зависит от теплоемкости газа.

***

Изотермический процесс

Изотермическим называют термодинамический процесс, протекающий при неизменной температуре.
Практически осуществить изотермический процесс с газом очень трудно. Ведь необходимо соблюсти условие, чтобы в процессе сжатия или расширения газ успевал обмениваться температурой с окружающей средой, поддерживая собственную температуру постоянной.
Изотермический процесс описывается законом Бойля-Мариотта: pV = const, т. е. при постоянной температуре величина давления газа обратно пропорциональна его объему.

Очевидно, что при изотермическом процессе внутренняя энергия газа не изменяется, поскольку его температура постоянна.
Чтобы выполнялось условие постоянства температуры газа, от него необходимо отводить теплоту, эквивалентную работе, затраченной на сжатие:

dq = dA = pdv.

Используя уравнение состояния газа, проделав ряд преобразований и подстановок, можно сделать вывод, что работа газа при изотермическом процессе определяется выражением:

A = RT ln(p1/p2).

***



Адиабатный процесс

Адиабатным называют термодинамический процесс, протекающий без теплообмена рабочего тела с окружающей средой. Подобно изотермическому, осуществить на практике адиабатный процесс очень сложно. Такой процесс может протекать с рабочим телом, помещенным в сосуд, например, цилиндр с поршнем, окруженный высококачественным теплоизолирующим материалом.
Но какой бы качественный теплоизолятор мы не применяли в данном случае, некоторым, пусть даже ничтожно малым, количеством теплоты рабочее тело и окружающая среда неизбежно будут обмениваться.
Поэтому на практике можно создать лишь приближенную модель адиабатного процесса. Тем не менее, многие термодинамические процессы, осуществляемые в теплотехнике, протекают настолько быстро, что рабочее тело и среда не успевают обмениваться теплотой, поэтому с некоторой степенью погрешности такие процессы можно рассматривать как адиабатные.

Для вывода уравнения, связывающего давление и объем 1 кг газа в адиабатном процессе, запишем уравнение первого закона термодинамики:

dq = du + pdv.

Поскольку для адиабатного процесса теплопередача dq равна нулю, а изменение внутренней энергии есть функция теплопроводности от температуры: du = cvdT, то можно записать:

cvdT + pdv = 0        (3).

Продифференцировав уравнение Клапейрона pv = RT, получим:

pdv + vdp = RdT.

Выразим отсюда dT и подставим в уравнение (3). После перегруппировки и преобразований получим:

pdvcv/(R + 1) + cvvdp/R = 0.

С учетом уравнения Майера R = cp – cv последнее выражение можно переписать в виде:

pdv(cv + cp – cv)/(cp – cv) + cvvdp/(cp – cv) = 0,

или

cppdv + cvvdp = 0      (4).

Разделив полученное выражение на cv и обозначив отношение cp/cv буквой k, после интегрирования уравнения (4) получим (при k = const):

ln vk + ln p = const   или   ln pvk = const    или    pvk = const.

Полученное уравнение является уравнением адиабатного процесса, в котором k – показатель адиабаты.
Если предположить, что объемная теплоемкость cv является величиной постоянной, т. е. cv = const, то работу адиабатного процесса можно представить в виде формулы (приводится без вывода):

l = cv(T1 – T2)    или    l = (p1v1 – p2v2)/(k-1).

***

Политропный процесс

В отличие от рассмотренных выше термодинамических процессов, когда какой-либо из параметров газа оставался неизменным, политропный процесс характеризуется возможностью изменения любого из основных параметров газа. Все рассмотренные выше термодинамические процессы являются частными случаями политропных процессов.
Общее уравнение политропного процесса имеет вид pvn = const, где n – показатель политропы – постоянная для данного процесса величина, которая может принимать значения от – ∞ до + ∞.

Очевидно, что придавая показателю политропы определенные значения, можно получить тот или иной термодинамический процесс – изохорный, изобарный, изотермический или адиабатный.
Так, если принять n = 0, получим p = const – изобарный процесс, если принять n = 1, получим изотермический процесс, описываемый зависимостью pv = const; при n = k процесс является адиабатным, а при n равном – ∞ или + ∞. мы получим изохорный процесс.

Так как уравнение политропы по своему содержанию аналогично уравнению адиабатного процесса, то формулы, устанавливающие связь между параметрами политропного процесса будут аналогичны таковым для адиабатного процесса с той лишь разницей, что показатель адиабаты k нужно заменить на показатель политропы n.
Тогда:

p2/p1 = (v1/v2)n;     Tnp(n-1) = const;     Tnv(n-1) = const.

Работа газа при политропном процессе может быть определена по формуле:

l = (p1v1 – p2v2)/(k-1).

Теплоемкость при политропном процессе (приводится без вывода):

cn = cv(n – k)/(n – 1).

***

Понятие энтальпии и энтропии

Скачать теоретические вопросы к экзаменационным билетам
по учебной дисциплине “Основы гидравлики и теплотехники”
(в формате Word, размер файла 68 кБ)

Скачать рабочую программу
по учебной дисциплине “Основы гидравлики и теплотехники” (в формате Word):

  • для специальности СПО “Механизация сельского хозяйства”
  • для специальности СПО “Техническое обслуживание и ремонт автомобильного транспорта”

Скачать календарно-тематический план
по учебной дисциплине “Основы гидравлики и теплотехники” (в формате Word):

  • для специальности СПО “Механизация сельского хозяйства”
  • для специальности СПО “Техническое обслуживание и ремонт автомобильного транспорта”



Источник