Равна абсолютная температура человека

Задумывались ли вы когда-нибудь, почему абсолютный ноль составляет именно -273,15 градусов Цельсия, а не -250 °C или -300 °C? И что вообще определяет температуру вещества? Ответ на вопрос довольно прост — скорость движения молекул или атомов вещества, которая обуславливается сообщаемой ему энергией.
Снижение температуры нагретого тела равно снижению скорости движения его атомов, а их «остановка» будет означать, что тело более не излучает тепловой энергии, находясь в состоянии полного термодинамического покоя. Это и будет температурой абсолютного нуля, недостижимого на практике. Но даже при абсолютном ноле молекулы и атомы не станут абсолютно неподвижными – некоторые колебания все равно будут происходить. Это следует из принципа неопределенности Гейзенберга.
С этим понятно, а что насчет перемещения в противоположную сторону температурной шкалы, иначе говоря, есть ли предел у высокой температуры?
Если отталкиваться от примера с абсолютным нулем, вещество должно прекратить нагреваться, как только составляющие его элементарные частицы достигнут скорости света, ибо выше ее ничего двигаться не может. Однако это не совсем так. Вы можете сообщать веществу энергию и после того, как будет достигнут предел скорости движения частиц, и всё же, как считают физики, в какой-то момент вещество больше не сможет становиться еще более горячим.
Опираясь на известные научные данные, проведем мысленный эксперимент и посмотрим, что будет происходить при «бесконечном» нагревании, к примеру, воды.
Источник изображения: esa.int
При достижении нескольких тысяч градусов молекулы превращенной в пар жидкости начнут распадаться на кислород и водород, а если продолжить нагрев дальше, материя начнет распадаться уже на уроне атомов. В результате получится состоящая из электронов и атомных ядер ионизированная плазма. Если продолжить нагрев, при достижении порядка 20 млрд градусов наступит очередь ядер атомов, которые распадутся на протоны и нейтроны.
При 2 триллионов градусов разорвутся самые крепкие связи, и мы получим бульон из фундаментальных частиц, именуемых кварками и глюонами. Но и это не предел…
Увеличьте температуру глюонового супа в 1000 раз, и вы превратите материю в чистую радиацию, наподобие света. Но система всё еще готова принять огромное количество энергии и продолжать разогреваться. Насколько далеко это может зайти? Вплоть до того момента, когда «сжатая» в пространстве энергия не начнет образовывать черные дыры, которые тут же будут распадаться до состояния низкоэнергетического излучения.
Источник изображения: zidbits.com
Это и есть известный науке предел накопления энергии, соответствующий температуре 1,416808* 10^32 Кельвина, именуемой планковской. Только вот энергии во Вселенной еще больше, а значит гипотетически мы можем продолжить накачивать ею систему.
Что произойдет или должно произойти при преодолении порога планковской температуры?
Возможно, это привело бы к рождению новой Вселенной или к чему-то такому, чего мы пока не можем представить. А если честно, на этот вопрос нет ответа, ибо не существует пока теории, которая могла бы описать физику мира, в котором были бы возможны подобные температуры.
Если вам понравилась статья, то поставьте лайк и подпишитесь на канал Научпоп. Наука для всех. Оставайтесь с нами, друзья! Впереди ждёт много интересного!
Источник
абсолютная температура
абсолю́тная температу́ра
(термодинамическая температура), температура Т, отсчитываемая от абсолютного нуля. Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры — кельвин (К). Цены деления шкал Кельвина и Цельсия равны: ΔК = ΔTtºC. Значения абсолютной температуры связаны с температурой по шкале Цельсия (tºC) соотношением t = T – 273,15 К.
* * *
АБСОЛЮТНАЯ ТЕМПЕРАТУРА
АБСОЛЮ́ТНАЯ ТЕМПЕРАТУ́РА (термодинамическая температура), температура Т, отсчитываемая от абсолютного нуля (см. АБСОЛЮТНЫЙ НУЛЬ). Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой (см. ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРАТУРНАЯ ШКАЛА). Единица абсолютной температуры — кельвин (см. КЕЛЬВИН (единица температуры)) (К). 1К = 1 °С. Значения абсолютной температуры связаны с температурой по Цельсия шкале (см. ЦЕЛЬСИЯ ШКАЛА) (t °С) соотношением t = Т — 273,15 К.
Энциклопедический словарь.
2009.
Смотреть что такое “абсолютная температура” в других словарях:
АБСОЛЮТНАЯ ТЕМПЕРАТУРА — (термодинамическая температура), параметр состояния, характеризующий макроскопич. систему в состоянии термодинамич. равновесия (при этом А. т. всех её макроскопич. подсистем одинакова). А. т. введена в 1848 англ. физиком У. Томсоном (Кельвином)… … Физическая энциклопедия
АБСОЛЮТНАЯ ТЕМПЕРАТУРА — (термодинамическая температура) температура Т, отсчитываемая от абсолютного нуля. Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической… … Большой Энциклопедический словарь
абсолютная температура — (физ.) – измеряемая выше абсолютного нуля. Большой словарь иностранных слов. Издательство «ИДДК», 2007 … Словарь иностранных слов русского языка
АБСОЛЮТНАЯ ТЕМПЕРАТУРА — АБСОЛЮТНАЯ ТЕМПЕРАТУРА, измеряется в градусах Цельсиевой шкалы, но отсчитывается от точки, лежащей на 273° ниже точки замерзания воды. Такая система отсчета особенно удобна для выражения состояния газа формулой Бойля Гей Люссака (Boyle, Gay… … Большая медицинская энциклопедия
абсолютная температура — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN absolute temperatureabsolute temperatureabs … Справочник технического переводчика
Абсолютная температура — Хаотическое тепловое движение на плоскости частиц газа таких как атомы и молекулы Существует два определения температуры. Одно с молекулярно кинетической точки зрения, другое с термодинамической. Температура (от лат. temperatura надлежащее… … Википедия
Абсолютная температура — ► absolute temperature Температура, отсчитываемая от абсолютного нуля (минимально возможная температура во Вселенной). Измеряется в кельвинах (0K = 273.16°С). Например, абсолютная температура кипения воды равна 100°С + 273.16°С = 373.16K … Нефтегазовая микроэнциклопедия
абсолютная температура — термодинамическая (абсолютная) температура Температура, отсчитываемая по термодинамической шкале температур от абсолютного нуля … Политехнический терминологический толковый словарь
абсолютная температура — absoliučioji temperatūra statusas T sritis Standartizacija ir metrologija apibrėžtis Nesisteminis termodinamės temperatūros pavadinimas. atitikmenys: angl. absolute temperature vok. absolute Temperatur, f rus. абсолютная температура, f pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
абсолютная температура — absoliučioji temperatūra statusas T sritis Standartizacija ir metrologija apibrėžtis Temperatūra, skaičiuojama nuo absoliučiojo nulio, t. y. 0 K arba 273,16 ºC. atitikmenys: angl. absolute temperature vok. absolute Temperatur, f rus. абсолютная… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
Источник
Что это за температура -273,15 °C., и почему ниже быть не может. Что такое температура, а также необычные свойства веществ при критических состояниях.
Что же такое температура? Температура- это движение, движение частиц. Ведь тепло это тоже движение, вспомните даже себя, когда вам холодно. Непроизвольное подёргивание мышц – ни что иное, как попытка организма согреть себя.
Фаренгейт. Немецкий физик, в честь которого и названа шкала на градуснике. Фаренгейт взял смесь воды со льдом, добавил туда хлорида аммония (по сути соль) и принял получившуюся температуру за “ноль” на своей шкале. Число 100 означало температуру человеческого тела в здоровом состоянии. В итоге получилось следующее. Температура человеческого тела в здоровом состоянии +97,9 °F (позже были внесены поправки), кипение воды происходит при +212 °F, лед тает при +32 °F. Что двигало этим человеком, когда он создавал свою шкалу, непонятно… Очень “удобная” система измерений. Всего пять стран до сих пор пользуются этой шкалой в качестве основной: Багамы, Белиз, Острова Кайман, Палау, США. Имперские системы измерений вообще не отличаются своей простой. Ну да ладно, их проблемы.
Цельсий. Шведский ученый сделал все гораздо проще, и спасибо ему за это. Отправная точка, или “ноль” была принята за температуры таяния льда, а температура кипения воды указывала на цифру 100 на шкале, что несомненно гораздо удобнее и именно благодаря этому весь мир (почти) использует шкалу Цельсия как основную.
Шкалы Цельсия и Фаренгейта пересекаются в точке -40 градусов, где указывают на одинаковую температуру.
Температура. Изначально ученые придерживались мнения, что температура — это некая субстанция, находящаяся в организмах и предметах. И чем больше этой субстанции, тем выше температура и наоборот. Имя этой субстанции было теплород. Поэтому, температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами. Сейчас-то мы конечно знаем, что никакого теплорода не существует, а температура представляет собой – колебания частиц. И чем выше колебания, тем выше температура.
Тепловые колебания сегмета альфа-спирали белка: амплитуда колебаний увеличивается с повышением температуры. Разогрев очень сильно вы разорвете связи в атомах, тем самым разрушив структуру.
Нагревая, например, длинный железный прут, он будет повышать свою температуру постепенно. Начиная с места нагрева, атомы в решетке железа будут производить колебания, постепенно подталкивая (раскачивая) соседние атомы, а те соседние от них и так далее, пока, нагрев не затронет атомы на другом конце прута. При чем место нагрева будет всегда горячее краев, так как часть тепла будет рассеиваться в окружающую среду.
Каждый человек, как известно выделяет тепло. Суммарное тепло вашего тела примерно равно теплу лампочки накаливания в 40-60 Ватт. Взглянув, следующий раз, на толпу людей, представьте сколько тепла пропадает зря).
В итоге получается так: чем выше колебания, тем выше температура. Отсюда можно сделать обратный вывод, чем ниже колебания, тем ниже и сама температура. Проведя некоторые расчеты, можем вычислить минимальную температуру. Никакое тело или объект не будет излучать тепло ни в каком диапазоне волн, т.е. вся структура любого объекта будет полностью неподвижна создав температуру равную -273,15 °C (абсолютный ноль). Почему создав? Именно объекты создают температуру. И именно тепло переходит от более горячего объекта к более холодному и никогда наоборот. Другими словами, двигается не холод, а тепло (очень утрировано конечно). Т.е. впустив холодный воздух Зимой в квартиру, вы одновременно выпускаете тепло на улицу. А вся воздушная масса в вашей квартире выравнивается по температуре, отдавая свою энергию от более теплых молекул к более холодным, понижая общие колебания. На практике правда еще не удавалось получить температуру равную абсолютному нулю, это всего лишь высчитанное значение. Но мы приблизились почти до самых пределов недобрав каких-то там сотых частей до минимума.
Сверхтекучесть. Как известно существует всего три состояния вещества (агрегатных состояния): газ, жидкость и твердое тело. Все эти три состояния достаточны для обывателей (для нас с вами). По факту же их больше. Плазма – четвертое агрегатное состояние. В нее переходят газы при повышении температуры и фиксированном давлении. Солнце, например, представляет из себя плазму. Аморфные тела, или аморфное состояние – Это тела, которые сохраняют структуру жидкости и обладающие небольшой текучестью и способностью сохранять форму. Примером стабильного аморфного тела служит стекло, естественные и искусственные смолы, клеи, парафин, воск и др.
Низкотемпературные состояния. Всего их несколько, но нам интересно только одно: Сверхтекучесть. При приближении к температуре близкой к абсолютному нулю, вещества начинают вести себя не так как обычно, проявляя новые свойства. У некоторых металлов появляется сверхпроводимость, у гелия появляется сверхтекучесть. Гелий становится не просто жидкостью, он становится квантовой жидкостью.
Гелий очень необычное вещество. Помимо жидкого гелия, можно получить так же его твердое состояние. Твёрдый гелий — состояние гелия при температуре, близкой к абсолютному нулю и давлении, значительно превышающем атмосферное. Гелий — единственный элемент, который не затвердевает, оставаясь в жидком состоянии, при атмосферном давлении и сколь угодно малой температуре. Переход в твёрдое состояние возможен только при давлении более 25 атм.
Надеюсь было полезно и интересно.
Понравился материал? поставьте лайк- вам нетрудно, а мне приятно, так я буду понимать, что материал интересен и делать больше подобных выпусков.
Слева кнопки- можно поделится в соцсетях.
Больше интересного в других статьях.
Подписка – плюсик в вашу карму.
Источник
Молекулярно-кинетическое определение
Температура с молекулярно-кинетической точки зрения — физическая величина, характеризующая интенсивность хаотического, теплового движения всей совокупности частиц системы и пропорциональная средней кинетической энергии поступательного движения одной частицы.
Связь между кинетической энергией, массой и скоростью выражается следующей формулой:
Ek = 1/2m • v 2
Таким образом частицы одинаковой массы и имеющие одинаковую скорость имеют и одинаковую температуру.
Средняя кинетическая энергия частицы связана с термодинамической температурой постоянной Больцмана:
Eср = i/2kBT
где:
i — число степеней свободы
kB = 1.380 6505(24) × 10−23 Дж/K — постоянная Больцмана
T — температура;
Термодинамическое определение
Температура — величина, обратная изменению энтропии (степени беспорядка) системы при добавлении в систему единичного количества теплоты: 1/T = ΔS/ΔQ.
История термодинамического подхода
Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами.
В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы. Если в системе два тела имеют одинаковую температуру, то между ними не происходит передачи кинетической энергии частиц (тепла). Если же существует разница температур, то тепло переходит от тела с более высокой температурой к телу с более низкой, потому что суммарная энтропия при этом возрастает.
Температура связана также с субъективными ощущениями «тепла» и «холода», связанными с тем, отдает ли живая ткань тепло или получает его.
Некоторые квантовомеханические системы могут находится в состоянии, при котором энтропия не возрастает, а убывает при добавлении энергии, что формально соответствует отрицательной абсолютной температуре. Однако такие состояния находятся не «ниже абсолютного нуля», а «выше бесконечности», поскольку при контакте такой системы с телом, обладающим положительной температурой, энергия передается от системы к телу, а не наоборот (подробнее см. Квантовая термодинамика).
Свойства температуры изучает раздел физики — термодинамика. Температура также играет важную роль во многих областях науки, включая другие разделы физики, а также химию и биологию.
Измерение температуры
Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры.
На практике для измерения температуры используют
- жидкостные и механические термометры,
- термопару,
- Термосопротивление
- Термометр сопротивления
- Газовый термометр
- Пирометр
Единицы и шкала измерения температуры
Из того, что температура — это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.
Шкала температур Кельвина
Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры — кельвин (К).
Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры — абсолютный ноль, то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.
Абсолютный ноль определён как 0 K, что приблизительно равно −273.15 °C.
Шкала температур Кельвина — температурная шкала, в которой начало отсчёта ведётся от абсолютного нуля.
Используемые в быту температурные шкалы — как Цельсия, так и Фаренгейта (используемая, в основном, в США), — не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.
Одна из них называется шкалой Ранкина, а другая — абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что кельвин равен градусу Цельсия, а градус Ранкина — градусу Фаренгейта.
Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K. Число градусов Цельсия и кельвинов между точками замерзания и кипения воды одинаково и равно 100. Поэтому градусы Цельсия переводятся в кельвины по формуле K = °C + 273,15.
Шкала Цельсия
В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при нормальном атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15° C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия — особая точка для метеорологии, поскольку связана с замерзанием атмосферной воды. Шкала предложена Андерсом Цельсием в 1742 г.
Шкала Фаренгейта
В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.
В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F – 32), 1 °F = 9/5 °С + 32. Предложена Г. Фаренгейтом в 1724.
Энергия теплового движения при абсолютном нуле
Когда материя охлаждается, многие формы тепловой энергии и связанные с ней эффекты одновременно уменьшаются по величине. Вещество переходит от менее упорядоченного состояния к более упорядоченному. Газ превращается в жидкость и затем кристаллизуется в твёрдое тело (гелий и при абсолютном нуле остается в жидком состоянии при атмосферном давлении). Движение атомов и молекул замедляется, их кинетическая энергия уменьшается. Сопротивление большинства металлов падает из-за уменьшения рассеяния электронов на колеблющихся с меньшей амплитудой атомах кристаллической решётки. Таким образом даже при абсолютном нуле электроны проводимости движутся между атомами со скоростью Ферми порядка 1×106м/с.
Температура, при которой частицы вещества имеют минимальное количество движения, сохраняющееся только благодаря квантовомеханическому движению, — это температура абсолютного нуля (Т = 0К).
Температуры абсолютного нуля достичь невозможно. Наиболее низкая температура (450±80)x10-12К конденсата Бозе-Эйнштейна атомов натрия была получена в 2003 г. исследователями из МТИ. При этом пик теплового излучения находится в области длин волн порядка 6400 км, то есть примерно радиуса Земли.
Температура с термодинамической точки зрения
Существует множество различных шкал температур. Когда-то температура определялась очень произвольно. Мерой температуры служили метки, нанесённые на равных расстояниях на стенах трубочки, в которой при нагревании расширялась вода. Потом решили измерить температуру ртутным термометром и обнаружили, что градусные расстояния не одинаковы. В термодинамике дается определение температуры, не зависящее от каких-либо частных свойств вещества.
Введем функцию f(T), которая не зависит от свойств вещества. Из термодинамики следует, что если какая-то тепловая машина, поглощая количество теплоты Q1 при T1 выделяет тепло Qs при температуре в один градус, а другая машина, поглотив тепло Q2 при T2, выделяет то же самое тепло Qs при температуре в один градус, то машина, поглощающая Q1 при T1 должна при температуре T2 выделять тепло Q2.
Конечно, между теплом Q и температурой T существует зависимость и тепло Q1 должно быть пропорционально Qs. Таким образом, каждому количеству тепла Qs, выделенного при температуре в один градус, соответствует количество тепла, поглощённого машиной при температуре T, равное Qs, умноженному на некоторую возрастающую функцию f температуры:
Q = Qsf(T)
Поскольку найденная функция возрастает с температурой, то можно считать, что она сама по себе измеряет температуру, начиная со стандартной температуры в один градус. Это означает, что можно найти температуру тела, определив количество тепла, которое поглощается тепловой машиной, работающей в интервале между температурой тела и температурой в один градус. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств вещества. Таким образом, для обратимой тепловой машины выполняется равенство:
где S — энтропия:
Для системы, в которой энтропия S может быть функцией S(E) её энергии E, термодинамическая температура определяется как:
Температура и излучение
При повышении температуры растёт энергия, излучаемая нагретым телом. Энергия излучения абсолютно чёрного тела описывается законом Стефана — Больцмана
Шкала Реомюра
Предложена в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.
Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)
1 °R = 1,25° C.
В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.
Переходы из разных шкал
виз | Кельвин | Цельсий | Фаренгейт |
---|---|---|---|
Кельвин (K) | = K | = С + 273,15 | = (F + 459,67) / 1,8 |
Цельсий (° C) | = K − 273,15 | = C | = (F − 32) / 1,8 |
Фаренгейт (°F) | = K · 1,8 − 459,67 | = C · 1,8 + 32 | = F |
Сравнение температурных шкал
Описание | Кельвин | Цельсий | Фаренгейт | Ранкин | Делиль | Ньютон | Реомюр | Рёмер |
---|---|---|---|---|---|---|---|---|
Абсолютный ноль | −273.15 | −459.67 | 559.725 | −90.14 | −218.52 | −135.90 | ||
Температура таяния смеси Фаренгейта (соль и лёд в равных количествах) | 255.37 | −17.78 | 459.67 | 176.67 | −5.87 | −14.22 | −1.83 | |
Температура замерзания воды (Нормальные условия) | 273.15 | 32 | 491.67 | 150 | 7.5 | |||
Средняя температура человеческого тела ¹ | 310.0 | 36.6 | 98.2 | 557.9 | 94.5 | 12.21 | 29.6 | 26.925 |
Температура кипения воды (Нормальные условия) | 373.15 | 100 | 212 | 671.67 | 33 | 80 | 60 | |
Плавление титана | 1941 | 1668 | 3034 | 3494 | −2352 | 550 | 1334 | 883 |
Поверхность Солнца | 5800 | 5526 | 9980 | 10440 | −8140 | 1823 | 4421 | 2909 |
¹ Нормальная средняя температура человеческого тела — 36.6 ° C ±0.7 ° C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F – это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 ° C. Однако это значение не входит в диапазон нормальной средней температуры тела человека, поскольку температура разных частей тела разная[1].
Некоторые значения в этой таблице были округлены.
Характеристика фазовых переходов
Для описания точек фазовых переходов различных веществ используют следующие значения температуры:
- Температура плавления
- Температура кипения
- Температура отжига
- Температура спекания
- Температура синтеза
- Гомологическая температура
- Тройная точка
- Температура Дебая (Характеристическая температура)
Примечания
См. также
- Абсолютная шкала температур
- Цветовая температура
- Отрицательная абсолютная температура
Литература
- Спасский Б. И.. История физики. М., «Высшая школа», 1977.
- Том 1, часть 1-я
- Сивухин Д. В. Термодинамика и молекулярная физика. — Москва: «Наука», 1990.
Wikimedia Foundation.
2010.
Смотреть что такое “Абсолютная температура” в других словарях:
АБСОЛЮТНАЯ ТЕМПЕРАТУРА — (термодинамическая температура), параметр состояния, характеризующий макроскопич. систему в состоянии термодинамич. равновесия (при этом А. т. всех её макроскопич. подсистем одинакова). А. т. введена в 1848 англ. физиком У. Томсоном (Кельвином)… … Физическая энциклопедия
АБСОЛЮТНАЯ ТЕМПЕРАТУРА — (термодинамическая температура) температура Т, отсчитываемая от абсолютного нуля. Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической… … Большой Энциклопедический словарь
абсолютная температура — (физ.) – измеряемая выше абсолютного нуля. Большой словарь иностранных слов. Издательство «ИДДК», 2007 … Словарь иностранных слов русского языка
АБСОЛЮТНАЯ ТЕМПЕРАТУРА — АБСОЛЮТНАЯ ТЕМПЕРАТУРА, измеряется в градусах Цельсиевой шкалы, но отсчитывается от точки, лежащей на 273° ниже точки замерзания воды. Такая система отсчета особенно удобна для выражения состояния газа формулой Бойля Гей Люссака (Boyle, Gay… … Большая медицинская энциклопедия
абсолютная температура — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN absolute temperatureabsolute temperatureabs … Справочник технического переводчика
абсолютная температура — (термодинамическая температура), температура Т, отсчитываемая от абсолютного нуля. Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической… … Энциклопедический словарь
Абсолютная температура — ► absolute temperature Температура, отсчитываемая от абсолютного нуля (минимально возможная температура во Вселенной). Измеряется в кельвинах (0K = 273.16°С). Например, абсолютная температура кипения воды равна 100°С + 273.16°С = 373.16K … Нефтегазовая микроэнциклопедия
абсолютная температура — термодинамическая (абсолютная) температура Температура, отсчитываемая по термодинамической шкале температур от абсолютного нуля … Политехнический терминологический толковый словарь
абсолютная температура — absoliučioji temperatūra statusas T sritis Standartizacija ir metrologija apibrėžtis Nesisteminis termodinamės temperatūros pavadinimas. atitikmenys: angl. absolute temperature vok. absolute Temperatur, f rus. абсолютная температура, f pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
абсолютная температура — absoliučioji temperatūra statusas T sritis Standartizacija ir metrologija apibrėžtis Temperatūra, skaičiuojama nuo absoliučiojo nulio, t. y. 0 K arba 273,16 ºC. atitikmenys: angl. absolute temperature vok. absolute Temperatur, f rus. абсолютная… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
Источник