Шкалы температур без абсолютной

Шкалы температур без абсолютной thumbnail
Есть ли температурные шкалы, кроме Фаренгейта, Цельсия и Кельвина?Есть ли температурные шкалы, кроме Фаренгейта, Цельсия и Кельвина?

В повседневной жизни большинство привыкло пользоваться термометрами со шкалой Цельсия. Такие устройства широко применяются в медицине, кулинарии, для измерения уличной и комнатной температуры. Каждому известно о существовании и других шкал, например, Фаренгейта или Кельвина. Но есть ли другие системы измерения температуры?

Как появилась температурная шкала?

Термин «температура» появился задолго до появления молекулярно-кинетической теории. В прежние времена ученые считали, что в каждом теле имеется «теплород», особая материя, которой больше в теплых телах и, соответственно, меньше в холодных.

Из этого выходило, что температура представляла собой смесь веществ тела и теплорода. Чем выше ее показатель, тем крепче была эта смесь. Именно эти убеждения и положили начало измерениям спиртных напитков в градусах.

Сейчас же термин «температура» подразумевает меру среднего значения кинетической энергии молекул, которые есть в веществе. Единиц измерения температуры несколько. Среди них наиболее распространенными считаются градус Цельсия, Кельвина и Фаренгейта.

Термоскоп Галилео Галилея

Кто именно является изобретателем термометра, неизвестно. В далекие времена над этой задачей трудилось множество ученых, среди которых известны такие имена, как лорд Бэкон и Галилей.

У самых первых термометров не было никаких шкал. Измерительные приборы были воздушными, и атмосферное давление являлось единственным показателем. По такому термометру можно было определить относительные температурные колебания.

После начали появляться термометры с водой вместо воздуха. Но они просуществовали недолго, так как из-за мороза жидкость разрывала прибор. Далее воду заменили винным спиртом.

Эванджелиста Торричелли, ученик Галилея, изобрел термометр, который наполнил смесью спирта и ртути. Также он запаял прибор, и атмосферное давление больше не оказывало влияния на показания.

Первую точную шкалу изобрел в 1723 году физик из Германии – Габриэль Фаренгейт. Минимальную температуру он смог получить, смешав соль, воду, нашатырь и лед – полученное значение было принято за ноль. Смесь льда и воды имела температуру в 32 градуса. Третью точку на шкале – 212 градусов по Фаренгейту, занимало кипение воды.

Андерс Цельсий

Андерс Цельсий в 1742 году разделил шкалу на сто интервалов. Кипение воды было на нуле, а плавление льда – на 100 градусах. То есть, 100 – это замерзание, а 0 – кипение воды. Карл Линней перевернул шкалу Цельсия и значения поменялись местами. Таким образом, более правильным утверждением было бы называть шкалу Цельсия шкалой Линнея.

В 1848 году лорд Кельвин изобрел особую шкалу, где не было отрицательных температур. Ноль по этой шкале – полная остановка тепловых движений молекул. То есть, дальнейшее замерзание невозможно.

Другие шкалы

Помимо широко известных, существуют и других температурные шкалы, которые оказались менее востребованными:

  • Ранкина;
  • Реомюра;
  • Делиля;
  • Рёмера;
  • Ньютона.

В 1859 У. Ранкин предложил свою шкалу, в которой 1 градус совпадал с градусом Фаренгейта. Шкала Ранкина считается абсолютной температурной шкалой. 0 градусов Ранкина – это 0К и -459,67 градусов Фаренгейта.

Рене Антуан Реомюр в 1730 предложил свою шкалу на основе изобретенного им же спиртового термометра. Градус Реомюра соответствует единице и равен 1,25℃. Это 1/80 часть разницы между температурой кипения воды и таяния льда, от 0 до 80ºR. Данной шкалой пользовались долгое время во Франции, но сейчас она не актуальна.

Давно забыли и о шкале Делиля. Она была предложена Жозефом Делилем в 1732. Вода, согласно данной шкале, закипала при 0 градусов, а замерзала при 150. 1 градус Делиля – это -2/3 градуса Цельсия.

Сравнение температурных шкал

В 1701 г. датский ученый Рёмер предложил температурную шкалу, в которой за ноль принималась температура замерзания рассола. Позже в качестве нижней точки термометра Рёмер назначил температуру образования льда – 7,5 градусов.

Шкалой Ньютона сейчас тоже никто не пользуется. Исаак Ньютон предложил ее в том же 1701 году. Вероятно, она послужила прообразом для шкалы Цельсия. Градусник Ньютона была наполнен льняным маслом. Нижней точкой считалась температура замерзания воды (0 градусов), верхней – температура кипения 33 градуса.

Интересный факт: согласно шкале Ньютона, температура тела составляла 12 градусов.

Среди прочих исторических единиц температуры – градус Гука, Дальтона, Планковская температура и Лейденский градус.

Кроме шкал Цельсия, Фаренгейта, Кельвина есть и другие, например, Реомюра, Рёмера, Делиля, Ньютона. Но большинство вышли из употребления после того, как французы перешли к метрической системе мер. Так шкала Цельсия стала наиболее оптимальной в использовании.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Материал данной статьи дает представление о таком важном понятии как температура. Дадим определение, рассмотрим принцип изменения температуры и схему построения температурных шкал.

Читайте также:  Сильный кашель слабость без температуры

Что такое температура

Определение 1

Температура – это скалярная физическая величина, описывающая состояние термодинамического равновесия макроскопической системы тел.

Понятие температуры также применяют в качестве физической величины, определяющей степень нагретости тела, однако лишь такой трактовки для понимания смысла термина недостаточно. Все физические понятия находятся в связи с определенными фундаментальными законами и наделяются смыслом только в соответствии с этими законами. В данном случае термин температура связан с понятием теплового равновесия и с законом макроскопической необратимости.

Изменение температуры

Явление термодинамического равновесия тел, составляющих систему, говорит о наличии одинаковой температуры этих тел. Произвести замер температуры можно лишь косвенно, взяв за основу зависимость от температуры таких физических свойств тел, которые можно измерить непосредственно.

Определение 2

Вещества или тела, применяемые для получения значения температуры, называют термометрическими.

Допустим, два теплоизолированных тела приведены в тепловой контакт. Одно тело передаст другому поток энергии: запустится процесс теплопередачи. При этом тело, отдающее тепло, обладает соответственно большей температурой, чем тело, «принимающее» поток тепла. Очевидно, что через некоторое время процесс теплопередачи остановится и наступит тепловое равновесие: предполагается, что температуры тел выравниваются относительно друга, их значения будут находиться где-то в интервале между исходными значениями температур. Таким образом, температура служит некоторой меткой теплового равновесия. Получается, что любая величина t, удовлетворяющая требованиям:

  1. t1>t2, когда происходит теплопередача от первого тела ко второму;
  2. t1’=t2’=t, t1>t>t2, при установлении теплового равновесия может приниматься за температуру.

Также отметим, что тепловое равновесие тел подчинено закону транзитивности.

Определение 3

Закон транзитивности: когда два тела находятся в равновесии с третьим, то и между собой они пребывают в тепловом равновесии.

Важной чертой указанного определения температуры является его неоднозначность. Выбрав по-разному величины, отвечающие установленным требованиям (что отразится на способах измерения температуры), возможно получить несовпадающие шкалы температур.

Определение 4

Температурная шкала – это способ деления на части интервала температуры.

Разберем пример.

Пример 1

Общеизвестным устройством для измерения температуры является термометр. Для рассмотрения возьмем термометры различного устройства. Первый представлен ртутным столбиком в капилляре термометра, и значение температуры здесь определяется длиной этого столбика, отвечающей условиям 1 и 2, указанным выше.

И еще один способ измерить температуру: используя термопару – электрическую цепь с гальванометром и двумя спаями разнородных металлов (рисунок 1).

Изменение температуры

Рисунок 1

Один спай находится в среде с фиксированной температурой (в нашем примере это тающий лед), другой – в среде, температуру которой необходимо определить. Здесь признаком температуры является ЭДС термопары.

Указанные способы измерения температуры не дадут одинаковых результатов. И для перехода одной температуры к другой следует построить градуировочную кривую, которая установит зависимость ЭДС термопары от длины ртутного столбика. В этом случае равномерная шкала ртутного термометра преобразуется в неравномерную шкалу термопары (или наоборот). Равномерные шкалы измерения температур ртутного термометра и термопары создают две абсолютно различные температурные шкалы, на которых тело в одном и том же состоянии будет иметь различные температуры. Также возможно рассмотреть одинаковые по устройству термометры, но имеющие разные “термические тела” (к примеру, ртуть и спирт): мы не будем наблюдать совпадения температурных шкал и в этом случае. График зависимости длины ртутного столбика от длины спиртового столбика не будет линейным.

Из вышесказанного можно сделать вывод, что понятие температуры, базирующееся на законах теплового равновесия, неоднозначно. Подобная температура является эмпирической, зависит от способа измерения. За «нуль» шкалы эмпирической температуры принимается произвольная точка. Согласно определению эмпирической температуры, физический смысл несет лишь разность температур или ее изменение. Любая эмпирическая температурная шкала приводится в вид термодинамической температурной шкалы при использовании поправок, которые учтут характер связи термометрического свойства с термодинамической температурой.

Температурные шкалы

Для того, чтобы построить температурную шкалу для измерения, двум числовым значениям температуры присваивают две фиксированные реперные точки. После этого разность числовых значений, присвоенных реперным точкам, делится на выбранное произвольным образом необходимое количество частей, получая в результате единицу измерения температуры.

За исходные значения, используемые в качестве начала отсчета и единицы измерения, принимают температуры перехода химически чистых веществ из одного агрегатного состояния в другое, к примеру, температуру плавления льда t0 и кипения воды tk при нормальном атмосферном давлении (Па≈105 Па). Величины t0 и tk имеют разные значения в различных видах шкал измерения температуры:

  • Согласно шкале Цельсия (стоградусная шкала): температура кипения воды tk=100 °C, температура плавления льда t0 =0 °С. В шкале Цельсия температура тройной точки воды равна 0,01 °С при давлении 0,06 атм.

Определение 5

Тройная точка воды – такие температура и давление, при которых могут существовать в равновесии одновременно все три агрегатных состояния воды: жидкое, твердое (лед) и пар.

  • Согласно шкале Фаренгейта: температура кипения воды tk=212 °F; температура плавления льда t0 =32 °С.

Разница температур, выраженных в градусах по шкале Цельсия и шкале Фаренгейта, нивелируется согласно следующему выражению:

Читайте также:  Что делать если долго болит горло без температуры

t °C100=t °F-32180 или t °F=1,8 °C+32.

Ноль на этой шкале определен как температура замерзания смеси воды, нашатыря и соли, взятых в пропорции 1:1:1.

  • Согласно шкале Кельвина: температура кипения воды tk=373 К; температура плавления льда t0=273 К. Здесь температура отсчитывается от абсолютного нуля (t=273,15 °С) и ее называют термодинамической или абсолютной температурой. Т=0 К – такому значению температурысоответствует абсолютное отсутствие тепловых колебаний.

Значения температур по шкале Цельсия и по шкале Кельвина связаны между собой согласно следующему выражению:

T (K)=t °C+273,15 °C.

  • Согласно шкале Реомюра: температура кипения воды tk=80 °R; температура плавления льда t0=0 °R. В термометре Реомюра использовался спирт; на данный момент шкала почти не используется.

Температуры, выраженные в градусах Цельсия и градусах по Реомюру, связаны так:

1 °C=0,8 °R.

  • Согласно шкале Ранкина: температура кипения воды tk=671, 67 °Ra; температура плавления льда t0 =491,67 °Ra. Начало шкалы соответствует абсолютному нулю. Количество градусов между реперными точками замерзания и кипения воды в шкале Ранкина идентично шкале Фаренгейта и равно 180.

Температуры по Кельвину и Ранкину связаны выражением:

°Ra=°F+459,67.

Градусы по Фаренгейту возможно перевести в градусы по Ранкину согласно формуле:

°Ra=°F+459,67.

Наиболее применима в быту и технических устройствах шкала Цельсия (единица шкалы – градус Цельсия, обозначаемый как °C).

В физике же используют термодинамическую температуру, которая не просто удобна, но и несет глубокую физическую смысловую нагрузку, поскольку определена как средняя кинетическая энергия молекулы. Единица термодинамической температуры – градус Кельвина (до 1968 г.) или сейчас просто Кельвин (К), являющийся одной из основных единиц в СИ. Температура T=0 К называется абсолютным нулем температуры, как уже упоминалось выше.

Вообще современная термометрия опирается на шкалу идеального газа: за термометрическую величину принимают давление. Шкала газового термометра абсолютна (T=0, p=0). При решении практических задач чаще всего приходится применять именно эту шкалу температур.

Пример 2

Принято, что комфортная для человека температура в помещении находится в интервале от +18 °С до +22 °С. Необходимо рассчитать границы интервала температуры комфорта согласно термодинамической шкале.

Решение

Возьмем за основу соотношение T (K)=t °C+273,15 °C.

Произведем расчет нижней и верхней границ температуры комфорта по термодинамической шкале:

T=18+273≈291 (K);T=22+273≈295 (K).

Ответ: границы интервала температуры комфорта по термодинамической шкале находятся в интервале от 291 К до 295 К.

Пример 3

Необходимо определить, при какой температуре показания термометров по шкале Цельсия и по шкале Фаренгейта будут одинаковы.

Решение

Температурные шкалы

Рисунок 2

Возьмем за основу соотношение t°F=1,8t °C+32.

По условию задачи температур равны, тогда возможно составить следующее выражение:

x=1,8x+32.

Определим из полученной записи переменную x:

x=-320,8=-40 °C.

Ответ: при температуре -40 °С (или -40 °F) показания термометров по шкалам Цельсия и Фаренгейта будут одинаковы.

Источник

Почему абсолютный ноль это -273,15°С?

Физические явления, ежесекундно происходящие в каждой точке Вселенной, бывают как просты, так и сложны одновременно. Ежедневно ученые бьются над разгадкой их тайн, желая подчинить себе законы природы. Одна из таких тайн – это явление под названием «Абсолютный нуль».

В чем заключается его суть? Можно ли достичь абсолютного нуля? И почему он соответствует значению -273,15°С?

Что такое температура?

Прежде чем затронуть более глубокий вопрос, стоит разобраться в таком простом понятии, как температура. Что это такое? Под температурой тела подразумевают степень его нагретости.

Согласно термодинамике, данная степень находится в тесной взаимосвязи со скоростью движения молекул тела. В зависимости от его состояния, молекулы либо хаотически движутся (газообразное, жидкое), либо упорядочены и заключены в решетки, но при этом колеблются (твердое). Хаотичное движение молекул еще называют броуновским движением.

Таким образом, нагрев тела лишь увеличивает его энтропию, то есть хаотичность и интенсивность движения частиц. Если твердому телу передать тепловую энергию, его молекулы из более упорядоченного состояния начнут переходить в состояние хаотичное. Материя станет плавиться и превратится в жидкость.

Молекулы данной жидкости будут разгоняться все быстрее, и после точки кипения состояние тела начнет переходить в газообразное. А что если провести обратный опыт? Молекулы охлаждаемого газа станут замедляться, в результате чего он начнет процесс конденсации.

Газ превратиться в жидкость, которая затем затвердеет и перейдет в состояние твердого тела. Его молекулы упорядочены, и каждая находится в узле кристаллической решетки, но при этом все же колеблется. Охлаждение твердого тела приведет к тому, что это колебание будет становиться все менее заметным.

А можно ли охладить тело настолько, чтобы молекулы и вовсе замерли на месте? Этот вопрос будет рассмотрен позже. А пока стоит остановиться еще раз на том, что такое понятие, как температура, независимо от способа ее измерения (шкала Цельсия, Фаренгейта или Кельвина) – это все лишь удобная физическая величина, помогающая передать информацию о кинетической энергии молекул того или иного тела.

Почему -273,15°С?

Существует несколько систем измерения температуры – это градусы по Цельсию и Фаренгейту, и Кельвины. Упоминая абсолютный нуль, физики имеют в виду именно последнюю шкалу, которая, по сути, является абсолютной. Потому что начальной точкой шкалы Кельвина является абсолютный нуль.

Читайте также:  Если сухой кашель 2 дня без насморка и температуры что это

При этом в ней отсутствуют отрицательные значения. В физике при измерении температур используются Кельвины. По Фаренгейту это значение соответствует -459,67°F.

Почему абсолютный ноль это -273,15°С?

В системе привычного всем Цельсия абсолютный нуль равен -273,15°С. Все потому, что разработавший ее шведский астроном Андрес Цельсий решил упростить систему, сделав ее основными точками температуру таяния льда (0°С) и температуру закипания воды (100°С). Согласно Кельвину температура замерзания воды это 273,16 К.

То есть разница между системой Кельвина и Цельсия составляет 273,15°. Именно из-за данной разницы абсолютный ноль соответствует такой отметке на шкале Цельсия. Но откуда же взялся этот ноль?

Что же такое абсолютный нуль?

В изложенном выше примере с охлаждением твердого тела было показано, что чем ниже его температура, тем более упорядочено ведут себя молекулы. Их колебания замедляются, а при температуре -273,15°С они совершенно «замерзают». Можно сказать, что при абсолютном нуле молекулы абсолютно замедляются и прекращают движение.

Правда, согласно принципу неопределенности, мельчайшие частицы все равно будут осуществлять минимальное движение. Но это уже понятия квантовой физики. Поэтому абсолютный ноль не подразумевает совершенный покой, однако он подразумевает полный порядок среди частиц твердого тела.

Исходя из данного контекста, абсолютный нуль – этот та минимальная граница температуры, которую способно иметь физическое тело. Ниже уже некуда. Более того, еще никто и никогда не добивался температуры тела, равной абсолютному нулю. Согласно законам термодинамики достижение абсолютного нуля является невозможным.

Источник

Задумывались ли вы когда-нибудь, почему абсолютный ноль составляет именно -273,15 градусов Цельсия, а не -250 °C или -300 °C? И что вообще определяет температуру вещества? Ответ на вопрос довольно прост — скорость движения молекул или атомов вещества, которая обуславливается сообщаемой ему энергией.

Снижение температуры нагретого тела равно снижению скорости движения его атомов, а их «остановка» будет означать, что тело более не излучает тепловой энергии, находясь в состоянии полного термодинамического покоя. Это и будет температурой абсолютного нуля, недостижимого на практике. Но даже при абсолютном ноле молекулы и атомы не станут абсолютно неподвижными – некоторые колебания все равно будут происходить. Это следует из принципа неопределенности Гейзенберга.

С этим понятно, а что насчет перемещения в противоположную сторону температурной шкалы, иначе говоря, есть ли предел у высокой температуры?

Если отталкиваться от примера с абсолютным нулем, вещество должно прекратить нагреваться, как только составляющие его элементарные частицы достигнут скорости света, ибо выше ее ничего двигаться не может. Однако это не совсем так. Вы можете сообщать веществу энергию и после того, как будет достигнут предел скорости движения частиц, и всё же, как считают физики, в какой-то момент вещество больше не сможет становиться еще более горячим.

Опираясь на известные научные данные, проведем мысленный эксперимент и посмотрим, что будет происходить при «бесконечном» нагревании, к примеру, воды.

Источник изображения: esa.int

При достижении нескольких тысяч градусов молекулы превращенной в пар жидкости начнут распадаться на кислород и водород, а если продолжить нагрев дальше, материя начнет распадаться уже на уроне атомов. В результате получится состоящая из электронов и атомных ядер ионизированная плазма. Если продолжить нагрев, при достижении порядка 20 млрд градусов наступит очередь ядер атомов, которые распадутся на протоны и нейтроны.

При 2 триллионов градусов разорвутся самые крепкие связи, и мы получим бульон из фундаментальных частиц, именуемых кварками и глюонами. Но и это не предел…

Увеличьте температуру глюонового супа в 1000 раз, и вы превратите материю в чистую радиацию, наподобие света. Но система всё еще готова принять огромное количество энергии и продолжать разогреваться. Насколько далеко это может зайти? Вплоть до того момента, когда «сжатая» в пространстве энергия не начнет образовывать черные дыры, которые тут же будут распадаться до состояния низкоэнергетического излучения.

Источник изображения: zidbits.com

Это и есть известный науке предел накопления энергии, соответствующий температуре 1,416808* 10^32 Кельвина, именуемой планковской. Только вот энергии во Вселенной еще больше, а значит гипотетически мы можем продолжить накачивать ею систему.

Что произойдет или должно произойти при преодолении порога планковской температуры?

Возможно, это привело бы к рождению новой Вселенной или к чему-то такому, чего мы пока не можем представить. А если честно, на этот вопрос нет ответа, ибо не существует пока теории, которая могла бы описать физику мира, в котором были бы возможны подобные температуры.

Если вам понравилась статья, то поставьте лайк и подпишитесь на канал Научпоп. Наука для всех. Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник