Железо с водой при повышенной температуре
Железо вода реакция
Реакцию железа с водой можно выразить следующим суммарным уравнением:
3Fe + 4Н2О = Fe3О4 + 4Н2 ↑ + Q
Реакция идет с достаточной скоростью при нагревании (примерно до 400 °С). На ней был основан железопаровой способ получения водорода, утративший в настоящее время практическое значение. Однако эта реакция представляет интерес для истории химии: этим превращением в конце XVIII в. было доказано, что вода не простое вещество, а химическое соединение, в состав которого входит «горючий воздух» (т. е. водород).
Для опыта удобно воспользоваться свежевосстановленным железом в виде порошка, полученным взаимодействием водорода с оксидом железа (III) при сильном нагревании. Вместо восстановленного железа можно взять железные стружки, очищенные от оксидов железа споласкиванием их в кислоте, обезжиренные раствором щелочи, промытые водой и высушенные. Однако в этом случае реакция протекает медленнее.
Железо помещают в железную трубку, куда подводится вода (водяной пар). На рисунке 2 изображен вариант I опыта в железной трубке с диаметром 1,5—2 см. Более удобной для опытов является изогнутая трубка с длиной колен 15 и 25 см, которую можно изготовить в порядке самооборудования.
Рис. 2. Установка для взаимодействие раскаленного железа с водяным паром (вариант I):
1 — железная трубка, 2 — пробки, 3 — алонж, 4 — капельная воронка, 5 — газоотводная трубка, 6 — цилиндр, 7 — чаша кристаллизационная, 5 — горелка с насадкой.
В среднюю часть трубки 1 ближе к пробке помещают около 20 г железного порошка (или железных стружек) и слабо запирают его стеклянной ватой. Концы трубки закрывают хорошо подогнанными корковыми пробками 2 с отверстиями для алонжа 3 с капельной воронкой 4 и газоотводной трубкой 5. Нагревают железную трубку, не доводя ее до красного каления (более высокая температура способствует обратному — эндотермическому — процессу). Из капельной воронки 4 прибавляют по каплям воду.
После вытеснения из установки воздуха образующийся водород собирают в цилиндры и испытывают его, соблюдая правила техники безопасности. Заканчивают опыт: вынимают газоотводную трубку вместе с пробкой, прекращают нагревание железной трубки и приливание воды из капельной воронки. Содержащиеся в трубке оксиды железа могут быть использованы для восстановления из них железа для опытов, а иногда их оставляют в трубке для проведения другого опыта — восстановления оксидов железа водородом.
Рис. 3. Установка для взаимодействия железа с водяным паром (вариант II):
1 — колба круглодонная с водой, 2 —тройник, 3 — стеклянная трубка с порошком восстановленного железа между комками стеклянной ваты, 4 — газоотводная трубка, 5 — чаша кристаллизационная, б — цилиндр, 7 — газовая горелка со щелевой насадкой.
В другом варианте опыта, при котором пропускают над раскаленным железом не воду, а водяные пары, применяют не изогнутую, а прямую железную или фарфоровую трубку. В этой установке использовано сочетание двух типов реакторов: колба и реакционная трубка.
Для проведения опыта собирают установку, изображенную на рисунке 3. В трубке 3 помещают железный порошок или железные опилки между комками стеклянной ваты. Трубку сильно накаливают, после чего воду в колбе 1 доводят до кипения (для равномерного кипения в колбу помещают капилляры-кипятильники). Избыток пара выходит через тройник 2. Через несколько минут, когда из установки будет вытеснен воздух, подводят под цилиндр 6 газоотводную трубку и собирают водород. Наличие водорода доказывают поджиганием собранного в цилиндре газа.
Восстановление железа водородом
Взаимодействие железа с водой может протекать и в обратном направлении. Восстановление оксидов железа водородом — эндотермические процессы:
Fe2О3 + 3Н2 = 2Fe + 3Н2О — Q1 Fe3О4 + 4Н2 = 3Fe + 4Н2О — Q2
Для проведения опыта можно использовать установку, показанную на рисунке 3.
Рис. 3. Установка для получения железа восстановлением оксидов железа водородом:
1 — газоотводная трубка для подачи водорода, 2 — промывная склянка с концентрированной серной кислотой, 3 — железная трубка, 4 — стакан с охлаждающей смесью, 3 — приемник с обезвоженным медным купоросом, 6 — пробирка для собирания водорода.
Поступающий из аппарата Киппа по трубке 1 водород проходит через концентрированную серную кислоту в склянке 2 и в сухом виде проникает в реакционную трубку 3, и далее водород выходит наружу через трубку 6. После вытеснения из установки воздуха (проба водорода на чистоту!) водород поджигают у газоотводной трубки 6. Затем сильно нагревают трубку 3 с оксидом железа, что может привести к угасанию пламени у отверстия трубки 6. Через 10—15 мин разъединяют реактор с приемником, вынув пробку из него. В пробирке легко можно заметить голубые кристаллы медного купороса.
Они образовались при взаимодействии безводного сульфата меди с водой — одним из продуктов реакции водорода с оксидами железа. После этого прекращают нагревание трубки, продолжая пропускать водород до ее остывания. Высыпают содержимое трубки на стекло или в фарфоровую чашку и сравнивают его с исходным веществом. Если для опыта был взят оксид железа (III) красного цвета, то он отличается от образовавшегося продукта реакции — железа — по цвету и отсутствию магнитных свойств. В том же случае, когда в реакционной трубке находится оксид Fe3О4, в состав которого входит железо со степенями окисления +2 и +3, то исходные и конечные продукты идентифицируют при помощи разбавленной соляной кислоты, а не с помощью магнита, так как оба они — железо (Fe) и оксид железа (Fe3О4) — почти не отличаются по цвету и обладают магнитными свойствами.
Полученное таким способом железо может быть использовано в качестве катализатора при синтезе аммиака.
Железо восстановленное, Fe
Горючий порошок. Состав, % (масс): железо 98,5, углерод 0,18, кислород 0,9. Дисперсность образца менее 50 мкм. Т. самовоспл.: аэрогеля 240 °С, аэровзвеси 400 °С; нижн. конц. предел распр. пл. 100 г/м3; макс. давл. взрыва 250 кПа; макс, скорость нарастания давл. 3 МПа/с; МВСК 13,1% (об.); миним. энергия зажигания аэровзвеси 80 мДж. В зависимости от состава и дисперсности образца нижн. конц. предел распр. пл. колеблется в интервале 66—460 г/м3.
Железо Fe физические свойства
Порошок железа в зависимости от состава, крупности и технологии получения может быть горючим или трудногорючим веществом. Уменьшение размеров частиц порошка, т-ры восстановления или отжига, содержания кислорода способствуют развитию пирофорных свойств.
Железные порошки марок ПЖМ и ПЖОМ дисперсностью 40—100 мкм имеют следующие показатели пожаро-взрывоопасности: т. самовоспл. аэрогеля 260—460 °С, аэровзвеси 300—940 °С; нижн. конц. предел распр. пл. 100—875 г/мз. макс. давл. взрыва 101,3—3039 кПа; скор, нарастания давл. взрыва 1 — 18,2 МПа/с; МВСК 13—18% (об.); миним. энергия зажигания 6,8—23 мДж; железные порошки марок ПЖС и ПЖИ не воспламеняются в слое вплоть до 1000 °С и в аэровзвеси до 2000 0С.
Для определения пожароопасных свойств использованы нестандартные методики, можно применять распыленную воду.
Железо карбонильное
Горючий порошок. Содержание Fe 99% (масс). Дисперсность образца менее 74 мкм. Т. самовоспл.: аэрогеля 170 °С, аэровзвеси 320 °С; нижн. конц. предел распр. пл. 105 г/м3; миним. энергия зажигания 20 мДж; при конц. пыли 1000 г/м3 макс, давл. взрыва 300 кПа; макс, скорость нарастания давл. 16,6 МПа/с; МВСК 10% (об.) при разбавлении пылевоздушной смеси диоксидом углерода. Для образца со следами аммиаками дисперсностью менее 44 мкм т. самовоспл.: аэрогеля 260 °С, аэровзвеси 460 °С; нижн. конц. предел распр. пл. 120 г/м3; при конц. пыли 500 г/м3 макс. давл. взрыва 350 кПа; макс, скорость нарастания давл. 48,2 МПа/с; миним. энергия зажигания 120 мДж [471]. Средства тушения: табл. 4.1, гр. 3.
Железо карбонильное КЖ-20ф
Горючий серый порошок. Состав, % (масс): железо 97—98, углерод 0,7—0,8, азот 0,7—0,8, фосфор 0,01. Насыпная масса 2500—4500 кг/м3. Дисперсность образца 2—3 мкм. Т. воспл, 473 °С; т. самовоспл. 542 °С; т. тлен. 223 °С; нижн. конц. предел распр. пл. 102 г/м3. Средства тушения: табл. 4.1, гр. 3.
Железо карбонильное КЖР-10ф
горючий серый порошок. Состав, % (масс): железо 97—98, углерод 0,8—0,9, азот 0,8—0,9, фосфор 0,01. Насыпная масса 2500—4500 кг/м3. Дисперсность образца 3—4 мкм. Т. воспл. 482 °С; т. самовоспл. 555 °С; т. тлен. 229 °С; нижн. конц. предел распр. пл. 106 г/м3. Средства тушения: табл. 4.1, гр. 3.
Железо электролитическое
Горючее вещество, склонно к самовозгоранию. Дисперсность образца 25 мкм. Т. самовоспл. аэровзвеси 430 °С; т. тлен. 350 °С; нижн. конц. предел распр. пл. 220 г/м3; макс, давл. взрыва 330 кПа; миним. энергия зажигания 240 мДж; МВСК 13% (об.) [394, 532]. Средства тушения: табл. 4.1, гр. 10.
Статья на тему Реакция железа с водой
Источник
В химическом отношении железо, кобальт и никель относятся к металлам средней активности. В электрохимическом ряду напряжений металлов они располагаются левее водорода, между цинком и оловом. Чистые металлы при комнатной температуре довольно устойчивы, их активность сильно увеличивается при нагревании, особенно если они находятся в мелкодисперсном состоянии. Наличие примесей значительно снижает устойчивость металлов.
Взаимодействие с неметаллами
При нагревании на воздухе выше 200 °С железо взаимодействует с кислородом, образуя оксиды нестехиометрического состава FexO, мелкодисперсное железо сгорает с образованием смешанного оксида железа (II, III):
3Fe + 2O2 = Fe3O4.
Кобальт и никель реагируют с кислородом при более высоких температурах, образуя в основном оксиды двухвалентных элементов, имеющие переменный состав в зависимости от условий получения:
2Co + O2 = 2CoO,
2Ni + O2 = 2NiO.
С галогенами металлы реагируют, образуя галогениды :
2Fe + 3Cl2 = 2FeCl3,
Co + Br2 = CoBr2,
Ni + Cl2 = NiCl2.
Металлы довольно устойчивы к действию фтора, никель не разрушается фтором даже при температуре красного каления.
При взаимодействии с азотом при невысокой температуре железо, кобальт и никель образуют нитриды различного состава, например:
4Fe + N2 = 2Fe2N,
2Co + N2 = 2CoN,
3Ni + N2 = Ni3N2.
Взаимодействие с серой экзотермично и начинается при слабом нагревании, в результате образуются нестехиометрические соединения, которые имеют состав, близкий к ЭS:
Э + S = ЭS.
С водородом металлы триады железа не образуют стехиометрических соединений, но они поглощают водород в значительных количествах.
С углеродом, бором, кремнием, фосфором также при нагревании образуют соединения нестехиометрического состава, например:
3Co + C = Co3C,
2Ni + B = Ni2B,
Co + Si = CoSi,
3Fe + P = Fe3P.
Взаимодействие с водой
В воде в присутствии кислорода железо медленно окисляется кислородом воздуха (корродирует):
4Fe + 3O2 + 6H2O = 4Fe(OH)3.
При температуре 700–900 °С раскаленное железо реагирует с водяным паром:
3Fe + 4H2O = Fe3O4 + 4H2.
Кобальт и никель с водой не взаимодействуют.
Взаимодействие с кислотами
Железо реагирует с разбавленными растворами соляной и серной кислот, образуя соли железа (II):
Fe + 2HCl = FeCl2 + H2,
Fe + H2SO4 = FeSO4 + H2;
с разбавленной азотной кислотой образует нитрат железа (III) и продукт восстановления азотной кислоты, состав которого зависит от концентрации кислоты, например:
Fe + 4HNO3 = Fe(NO3)3 + NO + 2H2O.
При обычных условиях концентрированные (до 70 мас. %) серная и азотная кислоты пассивируют железо. При нагревании возможно взаимодействие с образованием солей железа (III):
2Fe + 6H2SO4 = Fe2(SO4)3 + 3SO2 + 6H2O,
Fe + 6HNO3 = Fe(NO3)3 + 3NO2 + 3H2O.
По отношению к кислотам кобальт и никель устойчивее железа, медленно реагируют с неокисляющими кислотами с образованием солей кобальта (II) и никеля (II) и водорода. С разбавленной азотной кислотой образуют нитраты кобальта (II) и никеля (II) и продукт восстановления азотной кислоты, состав которого зависит от концентрации кислоты:
3Э + 8HNO3 = 3Э(NO3)2 + 2NO + 4H2O.
При обычных условиях концентрированные серная и азотная кислоты пассивируют кобальт и никель, хотя в меньшей степени, чем железо. При нагревании возможно взаимодействие с образованием солей железа двухвалентных металлов:
Co + 2H2SO4 = CoSO4 + SO2 + 2H2O,
Ni + 4HNO3 = Ni(NO3)2 + 2NO2 + 2H2O.
Взаимодействие со щелочами
Разбавленные растворы щелочей на металлы триады железа не действуют. Возможно только взаимодействие железа с щелочными расплавами сильных окислителей:
Fe + KClO3 + 2KOH = K2FeO4 + KCl + H2O.
Для кобальта и никеля взаимодействие с расплавами щелочей не характерно.
Восстановительные свойства
Железо, кобальт и никель вытесняют металлы, которые расположены правее в электрохимическом ряду напряжений их растворов солей:
Fe + SnCl2 = FeCl2 + Sn,
Ni + CuSO4 = NiSO4 + Cu.
Образование карбонилов
Для металлов триады железа характерно образование карбонилов, в которых железо, кобальт и никель имеют степень окисления, равную 0. Карбонилы железа и никеля получаются при обычном давлении и температуре 20–60 °С:
Fe + 5CO = Fe(CO)5,
Ni + 4CO = Ni(CO)4.
Карбонилы никеля образуются при давлении 2·107 – 3·107 Па и температуре 150–200 °С:
2Co + 8CO = Co2(CO)8.
Источник